2D transition metal dichalcogenides (2D TMDCs) have thin and flexible structures and can be widely applied to nanoelectronics technology as a representative of 2D materials. Research studies on the surface functionalization of 2D TMDCs with nanoparticles have been actively conducted for fabrication of high-performance devices. Specifically, platinum (Pt) has attracted significant attention as a surface functionalization material in various applications, including photosensors, biosensors, and gas sensors due to its effective catalytic effect and excellent corrosion resistance. However, solution-based methods and PVD technologies, widely used for Pt nanoparticle synthesis, have difficulties forming fine particles dispersed on nanomaterials. Atomic layer deposition (ALD) is emerging as an advantageous method for forming nanoparticles, and dimethyl (N,N-dimethyl-3-buten-1-amine-N) platinum (DDAP) can overcome disadvantages of conventional ALD Pt precursors. In this study, we successfully synthesized Pt films using hydrogen as a new reactant in the DDAP-based ALD Pt process and evaluated formation of nanoparticles on SiO2/Si substrates. Subsequently, the ALD Pt-functionalized photodetector was fabricated with 2D WS2, a representative visible-light photodetector material, and improvement of photocurrent was confirmed by providing additional carriers via the localized surface plasmon resonance phenomenon. Furthermore, preferentially growing at high surface energy points, such as defects on WS2 nanosheets, can suppress the capture of photoexcited electrons by defects, consequently extending the carrier lifetime and preventing surface oxidation of the device. In the wavelength range of 500–1200 nm, the photoresponsivity of the ALD Pt-functionalized WS2 photodetector was improved more than 10–20 times compared to pristine WS2, and the response time was also noticeably improved. This study presents a novel approach to Pt functionalization using ALD, opening new possibilities for advanced nanodevice applications.

1.
C. H.
Lee
et al,
Nat. Nanotechnol.
9
,
676
(
2014
).
2.
F.
Withers
et al,
Nat. Mater.
14
,
301
(
2015
).
3.
S. J.
Choi
and
I. D.
Kim
,
Electron. Mater. Lett.
14
,
221
(
2018
).
4.
L.
Zeng
,
L.
Tao
,
C.
Tang
,
B.
Zhou
,
H.
Long
,
Y.
Chai
,
S. P.
Lau
, and
Y. H.
Tsang
,
Sci. Rep.
6
,
20343
(
2016
).
5.
L.
Cheng
and
Y.
Liu
,
J. Am. Chem. Soc.
140
,
17895
(
2018
).
6.
W.
Gao
et al,
Adv. Electron. Mater.
7
,
2000964
(
2021
).
7.
Y.
Yang
,
N.
Huo
, and
J.
Li
,
J. Mater. Chem. C
5
,
11614
(
2017
).
8.
A. S.
Pawbake
,
R. G.
Waykar
,
D. J.
Late
, and
S. R.
Jadkar
,
ACS Appl. Mater. Interfaces
8
,
3359
(
2016
).
9.
F.
Perrozzi
,
S. M.
Emamjomeh
,
V.
Paolucci
,
G.
Taglieri
,
L.
Ottaviano
, and
C.
Cantalini
,
Sens. Actuators B
243
,
812
(
2017
).
10.
M.
Shkir
,
M. T.
Khan
,
I. M.
Ashraf
,
A.
Almohammedi
,
E.
Dieguez
, and
S.
AlFaify
,
Sci. Rep.
9
,
12436
(
2019
).
11.
Y.
Liu
,
J.
Huang
,
J.
Yang
, and
S.
Wang
,
Solid State Electron.
130
,
20
(
2017
).
12.
J.
Ma
et al,
Adv. Funct. Mater.
28
,
1705268
(
2018
).
13.
C.
Wang
,
K. E.
Dekrafft
, and
W.
Lin
,
J. Am. Chem. Soc.
134
,
7211
(
2012
).
14.
R.
Wadhwa
,
A.
Ghosh
,
D.
Kumar
,
P.
Kumar
, and
M.
Kumar
,
Nanotechnology
33
,
255702
(
2022
).
15.
L.
Dreesen
,
C.
Humbert
,
M.
Celebi
,
J. J.
Lemaire
,
A. A.
Mani
,
P. A.
Thiry
, and
A.
Peremans
,
Appl. Phys. B
74
,
621
(
2002
).
16.
C.
Alexander
,
S.
Litosh
,
B.
Alway
,
J.
Wiebe
,
S.
Li
,
N.
Scott-Gray
,
F.
Gay
, and
D.
Saha
,
Platinum And Palladium Survey 2019
(
Refinitiv
,
London
,
2019
).
17.
P.
Akhtar
,
M.
Junaid Iqbal Khan
,
S. M.
Ramay
,
A.
Mahmood
,
M.
Saleem
, and
Z.
Kanwal
,
Chem. Phys. Lett.
780
,
138938
(
2021
).
18.
S.
Ramakrishnan
,
M.
Karuppannan
,
M.
Vinothkannan
,
K.
Ramachandran
,
O. J.
Kwon
, and
D. J.
Yoo
,
ACS Appl. Mater. Interfaces
11
,
12504
(
2019
).
19.
J.
Park
,
J.
Mun
,
J. S.
Shin
, and
S. W.
Kang
,
Roy. Soc. Open Sci.
5
,
181462
(
2018
).
20.
W. J.
Lee
,
S.
Bera
,
H. C.
Shin
,
W. P.
Hong
,
S. J.
Oh
,
Z.
Wan
, and
S. H.
Kwon
,
Adv. Mater. Interfaces
6
,
1901210
(
2019
).
21.
T.
Yoshida
,
Y.
Misu
,
M.
Yamamoto
,
T.
Tanabe
,
J.
Kumagai
,
S.
Ogawa
, and
S.
Yagi
,
Catal. Today
352
,
34
(
2020
).
23.
G. N.
Parsons
,
J. Vac. Sci. Technol. A
37
,
020911
(
2019
).
24.
P.
Schmitt
,
V.
Beladiya
,
N.
Felde
,
P.
Paul
,
F.
Otto
,
T.
Fritz
,
A.
Tünnermann
, and
A. V.
Szeghalmi
,
Coatings
11
,
173
(
2021
).
25.
J.
Thibault
,
J.-L.
Rouviere
,
A.
Bourret
, and
C.
Grenoble
,
Handbook of Semiconductor Technology: Electronic Structure and Properties of Semiconductors
(
Wiley
,
New York
,
2000
), Vol. 1, pp.
377
451
.
26.
V.
Vega-Mayoral
et al,
Nanoscale
8
,
5428
(
2016
).
27.
K.
Cao
,
J.
Cai
, and
R.
Chen
,
Chem. Mater.
32
,
2195
(
2020
).
28.
M.
Kim
,
S.
Nabeya
,
D. K.
Nandi
,
K.
Suzuki
,
H. M.
Kim
,
S. Y.
Cho
,
K. B.
Kim
, and
S. H.
Kim
,
ACS Omega
4
,
11126
(
2019
).
29.
30.
R. S.
Juang
,
C.
Te Hsieh
,
J. Q.
Hsiao
,
H. T.
Hsiao
,
D. Y.
Tzou
, and
M. M.
Huq
,
J. Power Sources
275
,
845
(
2015
).
31.
J.
Hämäläinen
,
F.
Munnik
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Mater.
20
,
6840
(
2008
).
32.
J.
Lee
et al,
NPG Asia Mater.
8
,
e331
(
2016
).
34.
S.
Lee
et al,
Appl. Surf. Sci.
571
,
151256
(
2022
).
35.
S.
Takakusagi
,
K. I.
Fukui
,
R.
Tero
,
F.
Nariyuki
, and
Y.
Iwasawa
,
Phys. Rev. Lett.
91
,
066102
(
2003
).
36.
X.
Liang
,
Y.
Zhou
,
J.
Li
, and
A. W.
Weimer
,
J. Nanopart. Res.
13
,
3781
(
2011
).
37.
F.
Grillo
,
H.
Van Bui
,
J. A.
Moulijn
,
M. T.
Kreutzer
, and
J. R.
Van Ommen
,
J. Phys. Chem. Lett.
8
,
975
(
2017
).
38.
W. J.
Lee
,
Z.
Wan
,
C. M.
Kim
,
I. K.
Oh
,
R.
Harada
,
K.
Suzuki
,
E. A.
Choi
, and
S. H.
Kwon
,
Chem. Mater.
31
,
5056
(
2019
).
39.
A. M.
Lubers
,
C. L.
Muhich
,
K. M.
Anderson
, and
A. W.
Weimer
,
J. Nanopart. Res.
17
,
1
(
2015
).
40.
M. D.
Abràmoff
,
P. J.
Magalhães
, and
S. J.
Ram
,
Biophotonics Int.
11
,
36
(
2004
), available at https://dspace.library.uu.nl/handle/1874/204900.
41.
T.
Yanase
,
F.
Uehara
,
I.
Naito
,
T.
Nagahama
, and
T.
Shimada
,
ACS Appl. Nano Mater.
3
,
10462
(
2020
).
43.
H. B. R.
Lee
,
M. N.
Mullings
,
X.
Jiang
,
B. M.
Clemens
, and
S. F.
Bent
,
Chem. Mater.
24
,
4051
(
2012
).
44.
H. B. R.
Lee
,
S. H.
Baeck
,
T. F.
Jaramillo
, and
S. F.
Bent
,
Nano Lett.
13
,
457
(
2013
).
45.
L.
Baker
,
A. S.
Cavanagh
,
J.
Yin
,
S. M.
George
,
A.
Kongkanand
, and
F. T.
Wagner
,
Appl. Phys. Lett.
101
,
111601
(
2012
).
46.
J. J.
Pyeon
,
C. J.
Cho
,
S. H.
Baek
,
C. Y.
Kang
,
J. S.
Kim
,
D. S.
Jeong
, and
S. K.
Kim
,
Nanotechnology
26
,
304003
(
2015
).
47.
C. T.
Campbell
,
J. Chem. Soc. Faraday Trans.
92
,
1435
(
1996
).
48.
P. J. F.
Harris
,
Int. Mater. Rev.
40
,
97
(
1995
).
49.
W.
Setthapun
et al,
J. Phys. Chem. C
114
,
9758
(
2010
).
50.
A. S. M.
Nur
,
E.
Funada
,
S.
Kiritoshi
,
A.
Matsumoto
,
R.
Kakei
,
S.
Hinokuma
,
H.
Yoshida
, and
M.
Machida
,
J. Phys. Chem. C
122
,
662
(
2018
).
51.
A. K.
Datye
,
Q.
Xu
,
K. C.
Kharas
, and
J. M.
McCarty
,
Catal. Today
111
,
59
(
2006
).
52.
J.
Dendooven
et al,
Phys. Chem. Chem. Phys.
22
,
24917
(
2020
).
53.
F.
Grillo
,
J. A.
Moulijn
,
M. T.
Kreutzer
, and
J. R.
van Ommen
,
Catal. Today
316
,
51
(
2018
).
54.
N. E.
Richey
,
C.
De Paula
, and
S. F.
Bent
,
J. Chem. Phys.
152
,
040902
(
2020
).
55.
S.
Qiao
,
H.
Yang
,
Z.
Bai
,
G.
Peng
, and
X.
Zhang
, in
2017 5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering
Chongqing, China, July 24-25, 2017 (Atlantis Press, Amsterdam
2017
), pp.
1408
1413
.
56.
B.
Chakraborty
,
A.
Bera
,
D. V. S.
Muthu
,
S.
Bhowmick
,
U. V.
Waghmare
, and
A. K.
Sood
,
Phys. Rev. B
85
,
161403
(
2012
).
57.
A.
Sohn
,
H.
Moon
,
J.
Kim
,
M.
Seo
,
K. A.
Min
,
S. W.
Lee
,
S.
Yoon
,
S.
Hong
, and
D. W.
Kim
,
J. Phys. Chem. C
121
,
22517
(
2017
).
59.
D.
Shin
et al,
ACS Appl. Nano Mater.
6
,
19327
(
2023
).
60.
A. A.
Kistanov
,
Y.
Cai
,
K.
Zhou
,
S. V.
Dmitriev
, and
Y. W.
Zhang
,
J. Mater. Chem. C
6
,
518
(
2018
).
62.
N.
Yadava
and
R. K.
Chauhan
,
ECS J. Solid State Sci. Technol.
9
,
055011
(
2020
).
63.
V.
Subramanian
,
E.
Wolf
, and
P. V.
Kamat
,
J. Phys. Chem. B
105
,
11439
(
2001
).
64.
K.
Yu
,
Y.
Tian
, and
T.
Tatsuma
,
Phys. Chem. Chem. Phys.
8
,
5417
(
2006
).
65.
C.
Lan
,
C.
Li
,
Y.
Yin
, and
Y.
Liu
,
Nanoscale
7
,
5974
(
2015
).
67.
M.
Alamri
,
M.
Gong
,
B.
Cook
,
R.
Goul
, and
J. Z.
Wu
,
ACS Appl. Mater. Interfaces
11
,
33390
(
2019
).
68.
See the supplementary material online for molecular structure of DDAP and more information.

Supplementary Material

You do not currently have access to this content.