Photonic crystals (PhCs) are spatially organized structures with lattice parameters equivalent to the operational wavelength of light. PhCs have been subject to extensive research efforts in the last two decades and are known for controlling light propagation with applications in sensing and time-delayed communication due to the slow-light phenomenon. Despite their exceptional properties, PhCs are difficult to fabricate using planar micromachining techniques due to their periodic structures. Techniques like two-photon stereolithography have been discussed for PhC fabrication in the literature, but the inherent disadvantage of poor refractive index (RI) contrast results in limited application. In this work, we present sequential infiltration synthesis performed on two-photon stereolithographically printed 3D PhCs for infiltration with zinc oxide to increase the RI of 3D PhCs. Finite element analysis was performed over a range of RI contrast values to study the change in photonic bandgap (PBG) with RI contrast. The transmission spectra were recorded on 3D PhCs before and after infiltration to demonstrate the change experimentally. An increase in the PBG width and absorbance is seen postinfiltration due to enhanced RI. This work presents the first, to our knowledge, sequentially infiltrated enhanced 3D PhC fabricated with two-photon stereolithography.

1.
John D.
Joannopoulos
,
Pierre R.
Villeneuve
, and
Shanhui
Fan
,
Nature
386
,
143
(
1997
).
2.
Yanyu
Xiong
,
Skye
Shepherd
,
Joseph
Tibbs
,
Amanda
Bacon
,
Weinan
Liu
,
Lucas D.
Akin
,
Takhmina
Ayupova
,
Seemesh
Bhaskar
, and
Brian T.
Cunningham
,
Micromachines
14
,
668
(
2023
).
3.
4.
John D.
Joannopoulos
,
Steven G.
Johnson
,
Joshua N.
Winn
, and
Robert D.
Meade
,
Molding the Flow of Light
(
Princeton University
,
Princeton
,
NJ
,
2008
).
5.
Anuj
Singhal
and
Igor
Paprotny
,
IEEE Sens. J.
22(21), 20126 (
2022
).
6.
Chuan-Cheng
Cheng
and
Axel
Scherer
,
J. Vac. Sci. Technol. B
13
,
2696
(
1995
).
7.
M. A.
Butt
,
Svetlana Nikolaevna
Khonina
, and
N. L.
Kazanskiy
,
Opt. Laser Technol.
142
,
107265
(
2021
).
8.
N. L.
Henry
and
Daniel F.
Hayes
,
Mol. Oncol.
6
,
140
(
2012
).
9.
Rose K.
Cersonsky
,
James
Antonaglia
,
Bradley D.
Dice
, and
Sharon C.
Glotzer
,
Nat. Commun.
12
,
2543
(
2021
).
10.
Sevgi
Türker-Kaya
and
Christian W.
Huck
,
Molecules
22
,
168
(
2017
).
11.
Manijeh
Razeghi
and
Binh-Minh
Nguyen
,
Rep. Prog. Phys.
77
,
082401
(
2014
).
12.
Armin
Lambrecht
and
Katrin
Schmitt
, “
Mid-infrared gas-sensing systems and applications
,” in
Mid-Infrared Optoelectronics
(
Elsevier
,
New York
,
2020
), pp.
661
715
.
13.
Hong-Bo
Sun
,
Shigeki
Matsuo
, and
Hiroaki
Misawa
,
Appl. Phys. Lett.
74
,
786
(
1999
).
14.
Baohua
Jia
,
Hong
Kang
,
Jiafang
Li
, and
Min
Gu
,
Opt. Lett.
34
,
1918
(
2009
).
15.
Mandana
Hajizadehmotlagh
,
Anuj
Singhal
, and
Igor
Paprotny
,
J. Microelectromech. Syst.
29
,
1044
(
2020
).
16.
Xiaoqin
Zhou
,
Yihong
Hou
, and
Jieqiong
Lin
,
AIP Adv.
5
,
030701
(
2015
).
17.
Mateo
Reynoso
,
Ishan
Gauli
, and
Philip
Measor
,
Opt. Mater. Express
11
,
3392
(
2021
).
18.
Qing
Peng
,
Yu-Chih
Tseng
,
Seth B.
Darling
, and
Jeffrey W.
Elam
,
ACS Nano
5
,
4600
(
2011
).
19.
Leonidas E
Ocola
,
Yale
Wang
,
Ralu
Divan
, and
Junhong
Chen
,
Sensors
19
,
2061
(
2019
).
20.
Anuj
Singhal
,
Anandvinod
Dalmiya
,
Patrick T.
Lynch
, and
Igor
Paprotny
,
IEEE Photonics Technol. Lett.
35
,
410
(
2023
).
21.
Anuj
Singhal
,
Anandvinod
Dalmiya
,
Patrick T.
Lynch
, and
Igor
Paprotny
,
IEEE Sens. Lett.
7(10), 3502904 (
2023
).
22.
Catherine
Berthomieu
and
Rainer
Hienerwadel
,
Photosynth. Res.
101
,
157
(
2009
).
You do not currently have access to this content.