In current work, HfO2/SiO2 nanolaminates and HfO2 films were grown on AlGaN/GaN substrates via plasma-enhanced atomic layer deposition. A comparative study of how rapid thermal annealing modulates the microstructural and electrical properties of both films has been presented. It is found that the HfO2/SiO2 nanolaminate keeps an amorphous structure when thermally treated below 600 °C, whereas crystal grains appear within the 800 °C annealed sample. High-temperature annealing facilitates the transformation from Hf–O and Si–O to Hf–O–Si in the HfO2/SiO2 nanolaminates, forming an HfSiO4 composite structure simultaneously. The 800 °C annealed HfO2/SiO2 shows a low k value and large leakage current density. While the 600 °C annealed HfO2/SiO2 possesses an effective dielectric constant of 18.3, a turn-on potential of 9.0 V, as well as a leakage density of 10−2μA/cm2 at gate biases of both −10 and 2 V, revealing good potential in fabricating high electron mobility transistors.

1.
Y.
Kobayashi
,
K.
Kumakura
,
T.
Akasaka
, and
T.
Makimoto
,
Nature
484
,
223
(
2012
).
2.
D.
Chen
,
L.
Wan
,
J.
Li
,
Z.
Liu
, and
G.
Li
,
Solid-State Electron.
151
,
60
(
2019
).
3.
A.
Mojab
,
Z.
Hemmat
,
H.
Riazmontazer
, and
A.
Rahnamaee
,
IEEE Trans. Electron Devices
64
,
796
(
2017
).
4.
S.
Li
,
Q.
Hu
,
X.
Wang
,
T.
Li
,
X.
Li
, and
Y.
Wu
,
IEEE Electron Device Lett.
40
,
981
(
2019
).
5.
M.
Hua
,
Z.
Zhang
,
J.
Wei
,
J.
Lei
,
G.
Tang
,
K.
Fu
,
Y.
Cai
,
B.
Zhang
, and
K. J.
Chen
,
Proceedings of IEEE International Electron Devices Meeting
,
San Francisco
, 3–7 December 2016 (
IEEE
, New York,
2016
).
6.
Q.
Zhou
,
L.
Liu
,
A.
Zhang
,
B.
Chen
,
Y.
Jin
,
Y.
Shi
,
Z.
Wang
,
W.
Chen
, and
B.
Zhang
,
IEEE Electron Device Lett.
37
,
165
(
2016
).
7.
H.-S.
Kim
,
S.-W.
Han
,
W.-H.
Jang
,
C.-H.
Cho
,
K.-S.
Seo
,
J.
Oh
, and
H.-Y.
Cha
,
IEEE Electron Device Lett.
38
,
1090
(
2017
).
8.
H.-S.
Kim
,
W.-H.
Jang
,
S.-K.
Eom
,
S.-W.
Han
,
H.
Kim
,
K.
Seo
,
C.-H.
Cho
, and
H.-Y.
Cha
,
J. Semicond. Technol. Sci.
18
,
187
(
2018
).
9.
R.
Stoklas
,
D.
Gregušová
,
S.
Hasenöhrl
,
E.
Brytavskyi
,
M.
Ťapajna
,
K.
Fröhlich
,
Š.
Haščík
,
M.
Gregor
, and
J.
Kuzmík
,
Appl. Surf. Sci.
461
,
255
(
2018
).
10.
S.
Yang
,
S.
Huang
,
H.
Chen
,
C.
Zhou
,
Q.
Zhou
,
M.
Schnee
,
Q.-T.
Zhao
,
J.
Schubert
, and
K. J.
Chen
,
IEEE Electron Device Lett.
33
,
979
(
2012
).
11.
Y.-Z.
Yue
,
Y.
Hao
, and
J.-C.
Zhang
,
IEEE Compound Semiconductor Integrated Circuits Symposium
, 12–15 October 2008 (
IEEE
, New York,
2008
).
12.
J.
Wei
et al,
Proceedings of IEEE International Electron Devices Meeting
,
Washington, DC
, Monterey, CA, 7–9 December 2015 (
IEEE
, New York,
2015
).
13.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
29
,
050801
(
2011
).
14.
S.
Migita
,
Y.
Watanabe
,
H.
Ota
,
T.
Nabatame
, and
A.
Toriumi
,
ECS Trans.
19
,
563
(
2009
).
15.
Y. C.
Chang
,
H. C.
Chiu
,
Y. J.
Lee
,
M. L.
Huang
,
K. Y.
Lee
,
M.
Hong
,
Y. N.
Chiu
,
J.
Kwo
, and
Y. H.
Wang
,
Appl. Phys. Lett.
90
,
232904
(
2007
).
16.
A.
Uedono
,
T.
Nabatame
,
W.
Egger
,
T.
Koschine
,
C.
Hugenschmidt
,
M.
Dickmann
,
M.
Sumiya
, and
S.
Ishibashi
,
J. Appl. Phys.
123
,
155302
(
2018
).
17.
S. H.
Chan
et al,
Jpn. J. Appl. Phys.
55
,
021501
(
2016
).
18.
D.
Kikuta
,
K.
Itoh
,
T.
Narita
, and
T.
Mori
,
J. Vac. Sci. Technol. A
35
,
01B122
(
2017
).
19.
A.
Uzum
and
I.
Kanmaz
,
Thin Solid Films
738
,
138965
(
2021
).
20.
N.
Miyata
,
Appl. Phys. Lett.
113
,
251601
(
2018
).
21.
X.-Y.
Zhang
et al,
Nanoscale Res. Lett.
14
,
83
(
2019
).
22.
G.
Abromavičius
,
S.
Kičas
, and
R.
Buzelis
,
Opt. Mater.
95
,
109245
(
2019
).
23.
D.-Y.
Cho
et al,
Chem. Mater.
24
,
3534
(
2012
).
24.
D.-Y.
Cho
,
T. J.
Park
,
K. D.
Na
,
J. H.
Kim
, and
C. S.
Hwang
,
Phys. Rev. B
78
,
132102
(
2008
).
25.
T. S.
Boscke
,
J.
Muller
,
D.
Brauhaus
,
U.
Schroder
, and
U.
Bottger
,
Appl. Phys. Lett.
99
,
102903
(
2011
).
26.
S.
Mueller
,
J.
Mueller
,
A.
Singh
,
S.
Riede
,
J.
Sundqvist
,
U.
Schroeder
, and
T.
Mikolajick
,
Adv. Funct. Mater.
22
,
2412
(
2012
).
27.
C. M.
McGilvery
,
S.
McGilvery
,
M.
MacKenzie
,
F. T.
Docherty
,
A. J.
Craven
,
D. W.
McComb
, and
S. D.
Gendt
,
Springer Proc. Phys.
120
,
325
(
2008
).
28.
A.
Cota
,
B. P.
Burton
,
P.
Chain
,
E.
Pavon
, and
M. D.
Alba
,
J. Phys. Chem. C
117
,
10013
(
2013
).
29.
G.
Lucovsky
,
H.
Seo
,
J. P.
Long
,
K.-B.
Chung
,
R.
Vasic
, and
M.
Ulrich
,
Appl. Surf. Sci.
255
,
6443
(
2009
).
30.
O.
Renault
,
D.
Samour
,
J. F.
Damlencourt
,
D.
Blin
,
F.
Martin
,
S.
Marthon
,
N. T.
Barrett
, and
P.
Besson
,
Appl. Phys. Lett.
81
,
3627
(
2002
).
31.
N.
Liu
,
X.
Huang
, and
J. D.
Jan
,
J. Phys. D: Appl. Phys.
47
,
385106
(
2014
).
32.
Y. Y.
Mi
,
S. J.
Wang
,
J. W.
Chai
,
J. S.
Pan
,
A. C. H.
Huan
,
N.
Ning
, and
C. K.
Ong
,
Appl. Phys. Lett.
89
,
202107
(
2006
).
33.
H.-K.
Noh
,
Y. J.
Oh
, and
K. J.
Chang
,
Physica B
407
,
2907
(
2012
).
34.
B.
Aslan
and
L. F.
Eastman
,
Solid-State Electron.
64
,
57
(
2011
).
35.
L.
Shen
,
X.
Cheng
,
Z.
Wang
,
D.
Cao
,
L.
Zheng
,
Q.
Wang
,
D.
Zhang
,
J.
Li
, and
Y.
Yu
,
RSC Adv.
6
,
5671
(
2016
).
You do not currently have access to this content.