Reactive multilayer films (RMFs), a type of nanostructured energetic material, are recognized as an indispensable component for laser-driven flyer plate initiator systems. In this work, Al/Ti-RMF with three different modulation periods (600, 300, and 150 nm) were prepared and integrated into multilayer flyer plates, and energetic material with optimized performance for laser-driven flyers was obtained. Cross-sectional observations demonstrate that the modulation periods of the RMF are precisely regulated, with thickness errors falling within 3.4%. The velocity of the flyer plates was significantly higher with a modulation period of 150 nm, reaching 2174.16 m/s. Molecular dynamics simulation results show that as the modulation period decreases, the diffusion rate of atoms increases, enabling the reaction between the RMF to be completed in a shorter time span, which makes for higher velocity of the flyer. The energy coupling efficiency results indicate that the kinetic energy coupling efficiency of the RMF with a modulation period of 150 nm is 145.6% and 29.8% higher compared to those with modulation periods of 600 and 300 nm, respectively. It is proved that Al/Ti-RMF have high-energy output performance and can be a novel candidate for laser-driven flyer plates, which will play a critical role in complex electromagnetic interference environments in the future.

1.
K.
Okada
et al,
Int. J. Impact Eng.
29
,
497
(
2003
).
2.
H.
Zhang
,
L.
Wu
,
P.
Hu
,
W.
Guo
,
W.
Zhang
,
Y.
Ye
, and
R.
Shen
,
Opt. Laser Technol.
120
,
105709
(
2019
).
3.
M.
Milosavljević
,
N.
Stojanović
,
D.
Peruško
,
B.
Timotijević
,
D.
Toprek
,
J.
Kovač
,
G.
Dražič
, and
C.
Jeynes
,
Appl. Surf. Sci.
258
,
2043
(
2012
).
4.
W.
Guo
,
L.
Wu
,
N.
He
,
S.
Chen
,
W.
Zhang
,
R.
Shen
, and
Y.
Ye
,
Laser Part. Beams
36
,
29
(
2018
).
5.
W.
Guo
,
S.
Chang
,
J.
Cao
,
L.
Wu
,
R.
Shen
, and
Y.
Ye
,
Nanoscale Res. Lett.
14
,
301
(
2019
).
6.
Y.
Gao
,
L.
Wang
,
W.
Qin
,
G.
Lyu
,
J.
Huang
, and
D.
Tang
,
Opt. Laser Technol.
149
,
107881
(
2022
).
7.
R.
Roybal
,
C.
Stein
,
C.
Miglionico
, and
J.
Shively
,
Int. J. Impact Eng.
17
,
707
(
1995
).
8.
K. E.
Brown
,
W. L.
Shaw
,
X.
Zheng
, and
D. D.
Dlott
,
Rev. Sci. Instrum.
83
,
103901
(
2012
).
9.
H.
Wang
and
Y.
Wang
,
Opt. Lasers Eng.
97
,
1
(
2017
).
10.
J. H.
You
and
H. S.
Kim
,
Int. J. Adv. Manuf. Technol.
96
,
3511
(
2018
).
11.
R. J.
Lawrence
and
W. M.
Trott
,
Int. J. Impact Eng.
14
,
439
(
1993
).
12.
R. E.
Russo
,
X.
Mao
,
H.
Liu
,
J.
Gonzalez
, and
S. S.
Mao
,
Talanta
57
,
425
(
2002
).
13.
C. J.
Morris
et al,
J. Phys. Chem. Solids
71
,
84
(
2010
).
14.
P.
Krehl
,
F.
Schwirzke
, and
A. W.
Cooper
,
J. Appl. Phys.
46
,
4400
(
1975
).
15.
D. H.
Lowndes
,
D. B.
Geohegan
,
A. A.
Puretzky
,
D. P.
Norton
, and
C. M.
Rouleau
,
Science
273
,
898
(
1996
).
16.
W.
Guo
,
L.
Wu
,
N.
Meng
,
Y.
Chen
,
Z.
Ma
,
X.
Zhou
,
W.
Zhang
,
R.
Shen
, and
Y.
Ye
,
Chem. Eng. J.
360
,
1071
(
2019
).
17.
L.
Wang
et al,
Adv. Eng. Mater.
23
,
2000745
(
2021
).
18.
L.
Wang
,
Y.
Yan
,
M.
Ai
,
W.
Zhang
,
H.
Jiang
,
W.
Qin
,
Y.
Wang
,
L.
Zhang
, and
D.
Tang
,
Vacuum
184
,
109949
(
2021
).
19.
B.
Sallé
,
C.
Chaléard
,
V.
Detalle
,
J. L.
Lacour
,
P.
Mauchien
,
C.
Nouvellon
, and
A.
Semerok
,
Appl. Surf. Sci.
138–139
,
302
(
1999
).
20.
L.
Wang
,
Y.
Yan
,
X.
Ji
,
W.
Zhang
,
H.
Jiang
,
W.
Qin
,
Y.
Wang
, and
D.
Tang
,
Nanoscale Res. Lett.
15
,
125
(
2020
).
21.
W. P.
Bassett
,
B. P.
Johnson
,
L.
Salvati Iii
,
E. J.
Nissen
,
M.
Bhowmick
, and
D. D.
Dlott
,
Propellants Explos. Pyrotech.
45
,
223
(
2020
).
22.
S.
Stekovic
,
H. K.
Springer
,
M.
Bhowmick
,
D. D.
Dlott
, and
D. S.
Stewart
,
J. Appl. Phys.
129
,
195901
(
2021
).
23.
H. R.
Brierley
,
D. M.
Williamson
, and
T. A.
Vine
,
AIP Conf. Proc.
1426
,
315
(
2012
).
24.
X.
Ji
,
W.
Qin
,
X.
Wu
,
Y.
Wang
,
F.
Gao
,
L.
Wang
, and
Y.
Hou
,
Nanophotonics
10
,
2683
(
2021
). doi:
25.
X.
Huang
,
X.
Ji
,
W.
Qin
,
Y.
Wang
,
L.
Wang
,
F.
Gao
, and
Y.
Hou
,
Opt. Express
31
,
7237
(
2023
).
26.
Q.
Luo
,
J.
Li
,
B.
Li
,
B.
Liu
,
H.
Shao
, and
Q.
Li
,
J. Magnes. Alloys
7
,
58
(
2019
).
27.
X.
Zhou
,
R.
Shen
,
Y.
Ye
,
P.
Zhu
,
Y.
Hu
, and
L.
Wu
,
J. Appl. Phys.
110
,
094505
(
2011
).
28.
X.
Zhou
,
M.
Torabi
,
J.
Lu
,
R.
Shen
, and
K.
Zhang
,
ACS Appl. Mater. Interfaces
6
,
3058
(
2014
).
29.
Y.
Zhang
,
H.
Jiang
,
D.
Xing
,
X.
Zhao
,
W.
Zhang
, and
Y.
Li
,
Appl. Therm. Eng.
117
,
617
(
2017
).
30.
Y.
Ma
,
H.
Li
,
L. P.
Yang
, and
A. M.
Hu
,
J. Nano Res.
54
,
22
(
2018
).
31.
Y.
Wang
,
X.
Sun
,
H.
Jiang
,
Y.
Gao
,
F.
Guo
,
L.
Wang
,
Y.
Zhang
, and
Q.
Fu
,
Propellants Explos. Pyrotech.
43
,
923
(
2018
).
32.
Y.
Zhang
,
Y.
Wang
,
M.
Ai
,
H.
Jiang
,
Y.
Yan
,
X.
Zhao
,
L.
Wang
,
W.
Zhang
, and
Y.
Li
,
ACS Appl. Mater. Interfaces
10
,
21582
(
2018
).
33.
E.
Illeková
,
J. C.
Gachon
,
A.
Rogachev
,
H.
Grigoryan
,
J. C.
Schuster
,
A.
Nosyrev
, and
P.
Tsygankov
,
Thermochim. Acta
469
,
77
(
2008
).
34.
Y.
Zhang
,
H.
Jiang
,
X.
Zhao
,
Y.
Yan
,
W.
Zhang
, and
Y.
Li
,
Nanoscale Res. Lett.
12
,
38
(
2017
).
35.
J.
Xu
,
Y.
Tai
,
C.
Ru
,
J.
Dai
,
Y.
Ye
,
R.
Shen
, and
P.
Zhu
,
ACS Appl. Mater. Interfaces
9
,
5580
(
2017
).
36.
C.
Rossi
,
K.
Zhang
,
D.
Esteve
,
P.
Alphonse
,
P.
Tailhades
, and
C.
Vahlas
,
J. Microelectromech. Syst.
16
,
919
(
2007
).
37.
A. S.
Rogachev
,
S. G.
Vadchenko
,
F.
Baras
,
O.
Politano
,
S.
Rouvimov
,
N. V.
Sachkova
, and
A. S.
Mukasyan
,
Acta Mater.
66
,
86
(
2014
).
38.
C.
Yang
,
Y.
Hu
,
R.
Shen
,
Y.
Ye
,
S.
Wang
, and
T.
Hua
,
Appl. Phys. A
114
,
459
(
2014
).
39.
Y.
Wang
,
Y.
Yan
,
H.
Jiang
,
Z.
Xing
,
Y.
Li
,
W.
Qin
,
L.
Wang
, and
F.
Guo
,
Nanoscale Res. Lett.
13
,
374
(
2018
).
40.
Y. N.
Picard
,
D. P.
Adams
, and
S. M.
Yalisove
,
Mater. Res. Soc. Symp. Proc.
850
,
54
(
2004
).
41.
A.
Ustinov
,
L.
Olikhovska
,
T.
Melnichenko
, and
A.
Shyshkin
,
Surf. Coat. Technol.
202
,
3832
(
2008
).
42.
Y.
Xin
,
X. D.
He
,
M. W.
Li
, and
Y.
Sun
,
J. Comput. Theor. Nanos.
5
,
1696
(
2008
).
43.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
44.
R. A.
Johnson
,
Phys. Rev. B
39
,
12554
(
1989
).
45.
Y.
Song
,
G.
Yu
,
L.
Jiang
,
X.
Zheng
,
Y.
Liu
, and
Y.
Yang
,
J. Appl. Phys.
109
,
073103
(
2011
).
46.
C. X.
Li
and
L.
Li
,
J. At. Mol. Phys.
39
,
111
(
2022
).
47.
D. M.
Zhang
,
L.
Guan
,
Z. H.
Li
,
Z. C.
Zhong
,
S. P.
Hou
,
F. X.
Yang
, and
K. Y.
Zheng
,
Acta Phys. Sin.
52
,
242
(
2003
).
You do not currently have access to this content.