Amorphous BxC films were deposited from the coreaction of triethylboron (TEB) and trimethylboron (TMB) at 700 °C in H2. We observed that combining both precursors allows us to balance their deposition kinetics and yields higher growth rates. Quantitative analysis by x-ray photoelectron spectroscopy shows that a wide range of B/C ratios between 0.7 and 4.1 could be obtained by varying the TEB:TMB ratio. Raman spectroscopy was used to assess the bonding in the films that gradually evolved from a structure similar to that of a-B, to a mixture of half-icosahedra embedded in a carbon matrix to a graphitic structure, as the carbon content increased. The addition of TMB in the gas phase was found to result in a decrease in elasticity and hardness but an improved adhesion, resulting in complex crack patterns upon cleaving, such as sinusoidal cracks and loops. On the one hand, the incorporation of carbon from TMB leads to an increasing contribution of the softer carbon matrix, to the detriment of polyhedral B–C structures, which in turn decreases Young’s modulus and hardness. On the other hand, it suggests that near the film-substrate interface, the presence of the carbon matrix affords a high density of strong carbon-based bonds, resulting in improved adhesion and preventing delamination of the coatings.

1.
B. W.
Robertson
,
S.
Adenwalla
,
A.
Harken
,
P.
Welsch
,
J. I.
Brand
,
P. A.
Dowben
, and
J. P.
Claassen
,
Appl. Phys. Lett.
80
,
3644
(
2002
).
2.
D.
Emin
and
T. L.
Aselage
,
J. Appl. Phys.
97
,
013529
(
2005
).
3.
A. N.
Caruso
et al,
Mater. Sci. Eng. B Solid State Mater. Adv. Technol.
135
,
129
(
2006
).
4.
F.
Piscitelli
et al,
J. Instrum.
12
,
P03013
(
2017
).
5.
V. F.
Sears
,
Neutron News
3
,
26
(
1992
).
6.
J. S.
Lewis
,
S.
Vaidyaraman
,
W. J.
Lackey
,
P. K.
Agrawal
,
G. B.
Freeman
, and
E. K.
Barefield
,
Mater. Lett.
27
,
327
(
1996
).
7.
H.
Pedersen
,
C.
Höglund
,
J.
Birch
,
J.
Jensen
, and
A.
Henry
,
Chem. Vap. Depos.
18
,
221
(
2012
).
8.
M.
Imam
,
K.
Gaul
,
A.
Stegmüller
,
C.
Höglund
,
J.
Jensen
,
L.
Hultman
,
J.
Birch
,
R.
Tonner
, and
H.
Pedersen
,
J. Mater. Chem. C
3
,
10898
(
2015
).
9.
A. H.
Choolakkal
,
H.
Högberg
,
J.
Birch
, and
H.
Pedersen
,
J. Vac. Sci. Technol. A
41
,
013401
(
2023
).
10.
M.
Imam
et al,
J. Phys. Chem. C
121
,
26465
(
2017
).
11.
L.
Souqui
,
H.
Högberg
, and
H.
Pedersen
,
Chem. Mater.
31
,
5408
(
2019
).
12.
S.
Hüfner
, in
Photoelectron Spectroscopy: Principles and Applications
, 3rd ed. (
Springer-Verlag
,
Berlin
,
2010
).
13.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
, in
Handbook of X-Ray Photoelectron Spectroscpopy
(
Perkin-Elmer Corporation
,
Eden Prairie
,
1992
).
14.
G. M.
Pharr
and
W. C.
Oliver
,
MRS Bull.
17
,
28
(
1992
).
15.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
16.
L.
Souqui
,
H.
Pedersen
, and
H.
Högberg
,
J. Vac. Sci. Technol. A
37
,
020603
(
2019
).
17.
T.
Shirasaki
,
A.
Derré
,
M.
Ménétrier
,
A.
Tressaud
, and
S.
Flandrois
,
Carbon
38
,
1461
(
2000
).
18.
S.
Doniach
and
M.
Sunjic
,
J. Phys. C Solid State Phys.
3
,
285
(
1970
).
19.
T.
Hu
et al,
Thin Solid Films
332
,
80
(
1998
).
20.
L. G.
Jacobsohn
,
R. K.
Schulze
,
M. E. H.
Maia Da Costa
, and
M.
Nastasi
,
Surf. Sci.
572
,
418
(
2004
).
21.
W.
Cermignani
,
T. E.
Paulson
,
C.
Onneby
, and
C. G.
Pantano
,
Carbon
33
,
367
(
1995
).
22.
S.
Jacques
,
A.
Guette
,
X.
Bourrat
,
F.
Langlais
,
C.
Guimon
, and
C.
Labrugere
,
Carbon
34
,
1135
(
1996
).
23.
M.
Koh
and
T.
Nakajima
,
Carbon
36
,
913
(
1998
).
24.
J. I.
Oñate
,
A.
García
,
V.
Bellido
, and
J. L.
Viviente
,
Surf. Coat. Technol.
49
,
548
(
1991
).
25.
E.
Pascual
,
E.
Martínez
,
J.
Esteve
, and
A.
Lousa
,
Diam. Relat. Mater.
8
,
402
(
1999
).
26.
Y.
Kawashima
and
G.
Katagiri
,
Phys. Rev. B
52
,
10053
(
1995
).
27.
V. L.
Solozhenko
,
O. O.
Kurakevych
, and
A. Y.
Kuznetsov
,
J. Appl. Phys.
102
,
063509
(
2007
).
28.
P. V.
Zinin
,
X. R.
Liu
,
L. C.
Ming
,
S. K.
Sharma
,
Y.
Liu
, and
S. M.
Hong
,
Diam. Relat. Mater.
18
,
1123
(
2009
).
29.
P. V.
Zinin
,
Y.
Liu
,
K.
Burgess
,
J.
Ciston
,
R.
Jia
,
S.
Hong
,
S.
Sharma
, and
L.
Ming
,
J. Appl. Phys.
116
,
133519
(
2014
).
30.
L. A.
Leites
,
Chem. Rev.
92
,
279
(
1992
).
31.
M.
Liu
,
S.
Yu
,
L.
He
, and
Y.
Ni
,
Soft Matter.
18
,
5906
(
2022
).
32.
O.
Yamamoto
and
K.
Hayamizu
,
J. Phys. Chem.
72
(3), 822–828 (1968).
33.
A. S.
Grady
,
R. E.
Linney
,
R. D.
Markwell
, and
D. K.
Russell
,
J. Mater. Chem.
3
,
483
(
1993
).
34.
M. T.
McEllistrem
,
M. S.
Jackson
,
R. D.
Culp
, and
J. G.
Ekerdt
,
Surf. Sci.
448
,
117
(
2000
).
35.
M.
Mashita
,
S.
Horiguchi
,
M.
Shimazu
,
K.
Kamon
,
M.
Mihara
, and
M.
Ishii
,
J. Cryst. Growth
77
,
194
(
1986
).
36.
M. J.
Kappers
,
M. L.
Warddrip
, and
R. F.
Hicks
,
J. Cryst. Growth
191
,
332
(
1998
).
37.
M. J.
Kappers
,
K. J.
Wilkerson
, and
R. F.
Hicks
,
J. Phys. Chem. B
101
,
4882
(
1997
).
38.
P.
Deminskyi
,
C.-W.
Hsu
,
B.
Bakhit
,
P.
Rouf
, and
H.
Pedersen
,
J. Vac. Sci. Technol. A
39
,
012411
(
2021
).
39.
J. S.
Lannin
,
Solid State Commun.
25
,
363
(
1978
).
40.
V.
Kulikovsky
,
V.
Vorlicek
,
P.
Bohac
,
R.
Ctvrtlik
,
M.
Stranyanek
,
A.
Dejneka
, and
L.
Jastrabik
,
Diam. Relat. Mater.
18
,
27
(
2009
).
41.
S.
Reynaud
, in
Fabrication and Characterization of Carbon and Boron Carbide Nanostructured Materials
, Ph.D. (Rutgers,
2010
).
42.
T. A.
Yıldız
and
M.
Durandurdu
,
J. Am. Ceram. Soc.
106
,
2862
(
2023
).
43.
L. G.
Jacobsohn
,
G.
Capote
,
N. C.
Cruz
,
A. R.
Zanatta
, and
F. L.
Freire
,
Thin Solid Films
419
,
46
(
2002
).
44.
M.
Kobayashi
,
J. Mater. Sci.
23
,
4392
(
1988
).
45.
Y. J.
Ou
,
P. Q.
La
, and
Y. L.
Zhu
,
Int. J. Simul. Syst. Sci. Technol.
2015
, 287143.
46.
C.
Vincent
,
H.
Vincent
,
H.
Mourichoux
, and
J.
Bouix
,
J. Mater. Sci.
27
,
1892
(
1992
).
47.
J.
Wei
,
B.
Jiang
,
Y.
Li
,
C.
Xu
,
D.
Wu
, and
B.
Wei
,
J. Mater. Chem.
12
,
3121
(
2002
).
48.
T. A.
Yıldız
and
M.
Durandurdu
,
Comput. Mater. Sci.
173
,
109397
(
2020
).
49.
C.
Pallier
et al,
Chem. Mater.
25
,
2618
(
2013
).
50.
R.
Khadka
,
N.
Baishnab
,
G.
Opletal
, and
R.
Sakidja
,
J. Non-Cryst. Solids
530
,
119783
(
2020
).
51.
V.
Sulyaeva
,
M.
Khomyakov
, and
M.
Kosinova
,
Appl. Sci.
11
,
9896
(
2021
).
52.
C. L.
Beckel
,
M.
Yousaf
,
M. Z.
Fuka
,
S. Y.
Raja
, and
N.
Lu
,
Phys. Rev. B
44
,
2535
(
1991
).
53.
R. W.
Jotham
,
J. S.
McAvoy
, and
D. J.
Reynolds
,
J. Chem. Soc. Dalt. Trans.
1972
,
473
(
1972
).
54.
T.
Lundström
,
AIP Conf. Proc.
140
,
19
(
1986
).
55.
D.
Emin
,
J. Solid State Chem.
177
,
1619
(
2004
).
56.
R. E.
Williams
,
Chem. Rev.
92
,
177
(
1992
).
57.
L.
Atanasoska
,
K.
Naoi
, and
W. H.
Smyrl
,
Chem. Mater.
4
,
988
(
1992
).
58.
S. M.
Brülls
et al,
Chem. A Eur. J.
26
,
6694
(
2020
).
59.
A. C.
Ferrari
and
J.
Robertson
,
Phys. Rev. B
61
,
14095
(
2000
).
60.
M.
Endo
,
C.
Kim
,
T.
Karaki
,
T.
Tamaki
, and
Y.
Nishimura
,
Phys. Rev. B Condens. Matter Mater. Phys.
58
,
8991
(
1998
).
61.
C. T.
Hach
,
L. E.
Jones
,
C.
Crossland
, and
P. A.
Thrower
,
Carbon
37
,
221
(
1999
).
62.
Y.
Hishiyama
,
H.
Irumano
,
Y.
Kaburagi
, and
Y.
Soneda
,
Phys. Rev. B
63
,
245406
(
2001
).
63.
N. P.
Stadie
,
E.
Billeter
,
L.
Piveteau
,
K. V.
Kravchyk
,
M.
Döbeli
, and
M. V.
Kovalenko
,
Chem. Mater.
29
,
3211
(
2017
).
64.
J. M.
Maita
,
G.
Song
,
M.
Colby
, and
S. W.
Lee
,
Mater. Des.
193
,
108856
(
2020
).
65.
B. J.
Nordell
et al,
J. Appl. Phys.
118
,
035703
(
2015
).
66.
G. M.
Pharr
,
T. Y.
Tsui
,
A.
Bolshakov
, and
W. C.
Oliver
,
MRS Proc.
338
,
127
(
1994
).
67.
M.
Okamura
,
Jpn. J. Appl. Phys.
8
,
1440
(
1969
).
68.
O. H.
Krafcsik
,
G.
Vida
,
I.
Pócsik
,
P.
Josepovits
, and
Katalin V.
Deák
,
Jpn. J. Appl. Phys.
40
,
2197
(
2001
).
69.
M.
El-Shabasy
,
Period. Polytech. Electr. Eng.
25
,
123
(
1981
).
70.
C. M.
Hadad
,
P. R.
Rablen
, and
K. B.
Wiberg
,
J. Org. Chem.
63
,
8668
(
1998
).
71.
J. A.
Dean
, in
Hanbook of Chemistry
(MacGraw Hill,
1999
), pp.
4.41
53
.
72.
J.
Kouvetakis
,
M. W.
McElfresh
, and
D. B.
Beach
,
Carbon
32
,
1129
(
1994
).
74.
A.
Volinsky
,
D.
Meyer
,
T.
Leisegang
, and
P.
Paufler
,
MRS Online Proceedings Library (OPL)
,
795
, U3.8 (
2003
).
75.
D. C.
Meyer
,
T.
Leisegang
,
A. A.
Levin
,
P.
Paufler
, and
A. A.
Volinsky
,
Appl. Phys. A Mater. Sci. Process
78
,
303
(
2004
).
76.
G. V.
Tsagareishvili
,
T. G.
Nakashidze
,
J. S.
Jobava
,
G. P.
Lomidze
,
D. E.
Khulelidze
,
D. S.
Tsagareishvili
, and
O. A.
Tsagareishvili
,
J. Less-Common Met.
117
,
159
(
1986
).
77.
K. A.
Cherednichenko
and
V. L.
Solozhenko
,
Solid State Commun.
303–304
,
113735
(
2019
).
78.
Y.
Okada
and
Y.
Tokumaru
,
J. Appl. Phys.
56
,
314
(
1984
).
79.
See the supplementary material online for a description of laser-induced graphitization, delamination of films deposited from TEB only, and low magnification LOM of cracks forming close loops on films deposited using a TEB-TMB mixture (50% TMB).

Supplementary Material

You do not currently have access to this content.