Gallium nitride (GaN) has attracted significant interest as a next-generation semiconductor material with various potential applications. During metalorganic chemical vapor deposition (MOCVD) of GaN using trimethyl gallium (TMG) and NH3, dimeric precursors are produced by gas-phase reactions such as adduct formation or thermal decomposition. In this work, the surface adsorption reactions of monomeric and dimeric Ga molecules including TMG, [(CH3)2Ga(NH2)]2, and [(CH3)GaNH]2 on the GaN surface are investigated using density functional theory calculations. It is found that [(CH3)2Ga(NH2)]2 is the most predominant form among the various dimeric precursors under typical GaN MOCVD process conditions. Our results indicate that the dimeric [(CH3)GaNH]2 precursor, which is generated through the thermal decomposition of [(CH3)2Ga(NH2)]2, would have higher reactivity on the GaN surface. Our work provides critical insights that can inform the optimization of GaN MOCVD processes, leading to advancements in GaN-based high-performance semiconductors.

1.
B. J.
Baliga
,
Semicond. Sci. Technol.
28
,
074011
(
2013
).
2.
A. S. A.
Fletcher
and
D.
Nirmal
,
Superlattices Microstruct.
109
,
519
(
2017
).
3.
S. J.
Pearton
,
C. R.
Abernathy
,
M. E.
Overberg
,
G. T.
Thaler
,
A. H.
Onstine
,
B. P.
Gila
,
F.
Ren
,
B.
Lou
, and
J.
Kim
,
Mater. Today
5
,
24
(
2002
).
4.
X.-G.
He
,
D.-G.
Zhao
, and
D.-S.
Jiang
,
Chin. Phys. B
24
,
067301
(
2015
).
5.
U. K.
Mishra
,
P.
Parikh
, and
Yi-Feng
Wu
,
Proc. IEEE
90
,
1022
(
2002
).
6.
D. M.
Hoffman
,
S.
Prakash Rangarajan
,
S. D.
Athavale
,
D. J.
Economou
,
J.
Liu
,
Z.
Zheng
, and
W.
Chu
,
J. Vac. Sci. Technol., A
14
,
306
(
1996
).
7.
I. M.
Watson
,
Coord. Chem. Rev.
257
,
2120
(
2013
).
8.
O.
Ambacher
,
H.
Angerer
,
R.
Dimitrov
,
W.
Rieger
,
M.
Stutzmann
,
G.
Dollinger
, and
A.
Bergmaier
,
Phys. Status Solidi A
159
,
105
(
1997
).
9.
H. X.
Wang
,
H. D.
Li
,
Y.
Amijima
,
Y.
Ishihama
, and
S.
Sakai
,
J. Cryst. Growth
235
,
183
(
2002
).
10.
J.
Li
,
J.
Wang
,
J.
Cai
,
Y.
Xu
,
B.
Fan
, and
G.
Wang
,
Int. Commun. Heat Mass Transfer
91
,
64
(
2018
).
11.
Y.
Azuma
,
M.
Shimada
, and
K.
Okuyama
,
Chem. Vap. Deposition
10
,
11
(
2004
).
12.
P.
Fini
,
X.
Wu
,
E. J.
Tarsa
,
Y.
Golan
,
V.
Srikant
,
S.
Keller
,
S. P.
Denbaars
, and
J. S.
Speck
,
Jpn. J. Appl. Phys.
37
,
4460
(
1998
).
13.
The Chemistry of Metal CVD
, edited by
T. T.
Kodas
and
M. J.
Hampden-Smith
,
1st ed.
(
Wiley
,
New York
,
1994
).
14.
Q.
An
,
A.
Jaramillo-Botero
,
W.-G.
Liu
, and
William A.
Goddard
,
J. Phys. Chem. C
119
,
4095
(
2015
).
15.
M.
Bakhtiary-Noodeh
,
T.
Detchprohm
, and
R. D.
Dupuis
,
J. Cryst. Growth
602
,
126982
(
2023
).
16.
R.
Samii
,
S. C.
Buttera
,
V.
Kessler
, and
N. J.
O’Brien
,
Eur. J. Inorg. Chem.
2022
,
e202200161
(
2022
).
17.
R. A.
Fischer
and
W.
Rogge
,
MRS Online Proc. Libr.
482
,
139
(
1997
).
19.
Y. J.
Hsu
,
L. S.
Hong
,
K. F.
Huang
, and
J. E.
Tsay
,
Thin Solid Films
419
,
33
(
2002
).
20.
K.
Rönnby
,
S. C.
Buttera
,
P.
Rouf
,
S. T.
Barry
,
L.
Ojamäe
, and
H.
Pedersen
,
J. Phys. Chem. C
123
,
6701
(
2019
).
21.
L.
Tang
,
R.
Zuo
,
H.
Zhang
, and
Y.
Yuan
,
Comput. Theor. Chem.
1166
,
112573
(
2019
).
22.
D.
Moscatelli
and
C.
Cavallotti
,
J. Phys. Chem. A
111
,
4620
(
2007
).
23.
R. M.
Watwe
,
J. A.
Dumesic
, and
T. F.
Kuech
,
J. Cryst. Growth
221
,
751
(
2000
).
24.
R. F.
Davis
and
A. Z. M.
Saliqur Rahman
,
Reference Module in Materials Science and Materials Engineering
(
Elsevier
,
New York
,
2017
).
25.
R.
Zuo
,
H.
Zhang
,
B.
Wang
,
S.
Meng
,
P.
Chen
, and
R.
Zhang
,
ECS J. Solid State Sci. Technol.
5
,
P667
(
2016
).
26.
H.
Pedersen
and
S. D.
Elliott
,
Theor. Chem. Acc.
133
,
1476
(
2014
).
27.
N.
Cheimarios
,
G.
Kokkoris
, and
A. G.
Boudouvis
,
Arch. Comput. Methods Eng.
28
,
637
(
2021
).
28.
M.
Shahmohammadi
,
R.
Mukherjee
,
C.
Sukotjo
,
U. M.
Diwekar
, and
C. G.
Takoudis
,
Nanomaterials
12
,
831
(
2022
).
29.
M. Z.
Ansari
,
D. K.
Nandi
,
P.
Janicek
,
S. A.
Ansari
,
R.
Ramesh
,
T.
Cheon
,
B.
Shong
, and
S.-H.
Kim
,
ACS Appl. Mater. Interfaces
11
,
43608
(
2019
).
30.
S.
Choi
,
A. S.
Ansari
,
H. J.
Yun
,
H.
Kim
,
B.
Shong
, and
B. J.
Choi
,
J. Alloys Compd.
854
,
157186
(
2021
).
31.
M. J.
Frisch
et al, GAUSSIAN 09 (Gaussian, Inc., Wallingford, CT, 2009).
32.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
33.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
34.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
35.
C.
Rietze
,
E.
Titov
,
S.
Lindner
, and
P.
Saalfrank
,
J. Phys.: Condens. Matter
29
,
314002
(
2017
).
36.
J.
Shi
,
R.
Zuo
, and
S.
Meng
,
Sci. China Technol. Sci.
56
,
1644
(
2013
).
37.
See supplementary material online for optimized geometry of the model cluster, calculated molar fractions and optimized structures of dimeric Ga precursors, and Gibbs energy change of the gas-phase reactions.

Supplementary Material

You do not currently have access to this content.