Plasma etching effects, such as microtrenching and bowing, negatively impact device performance. Modeling of these effects at nanoscale is challenging, and theoretical and experimental investigations are highly desired to gain insights into mechanisms. In this paper, we propose a new plasma etching model based on Monte Carlo simulations with a cellular method. This model considers reactions and ion-enhanced etching and consists of a novel particle reflection algorithm, which is a key factor impacting the etch profile. This model reproduces the adjustable microtrenching and bowing effects in periodic dense trenches with tens of nanometer dimensions. We conduct experiments of Si etching by Cl 2 and validate the model by comparing the simulated profile with cross-sectional scanning electron microscope images. This work enables a potential physical model driven process emulation tool toward design technology co-optimization.

1.
S.
Santermans
et al., “50 nm gate length FinFET biosensor & the outlook for single-molecule detection,”
2020 IEEE International Electron Devices Meeting (IEDM)
, San Francisco, CA, 12–18 December 2020 (IEEE, New York, 2020), p. 35.4.1.
2.
J.
Saussac
,
J.
Margot
, and
M.
Chaker
,
J. Vac. Sci. Technol. A
27
,
130
(
2009
).
3.
K.
Cheng
et al., “Air spacer for 10 nm FinFET CMOS and beyond,” 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 03-07 December 2016 (IEEE, New York, 2016), p. 17.1.1.
4.
S.
Kundu
,
S.
Decoster
,
P.
Bezard
,
A.
Nalin Mehta
,
H.
Dekkers
, and
F.
Lazzarino
,
ACS Appl. Mater. Interfaces
14
,
34029
(
2022
).
5.
C.
Kothandaraman
et al., “Vertical channel devices enabled by through silicon via (TSV) technologies,” 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 03-07 December 2016 (IEEE, New York, 2016), p. 9.6.1.
6.
H. J.
Kim
and
G. Y.
Yeom
,
ACS Appl. Nano Mater.
6
,
10097
(
2023
).
7.
R. J.
Hoekstra
,
M. J.
Kushner
,
V.
Sukharev
, and
P.
Schoenborn
,
J. Vac. Sci. Technol. B
16
,
2102
(
1998
).
8.
Z.
Huo
,
W.
Cheng
, and
S.
Yang
, “Unleash scaling potential of 3D nand with innovative xtacking® architecture,” 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, 12-17 June 2022 (IEEE, New York, 2022), pp. 254–255.
9.
T.
Mizuno
,
T.
Higuchi
,
H.
Ishiuchi
,
Y.
Matsumoto
,
Y.
Saitoh
,
S.
Sawada
, and
S.
Shinozaki
,
IEEE Trans. Electron Devices
35
,
2323
(
1988
).
10.
D.
Ruixue
,
Y.
Yintang
, and
H.
Ru
,
J. Semicond.
30
,
016001
(
2009
).
11.
M.
Mori
,
Y.
Osano
,
S.
Irie
,
K.
Eriguchi
, and
K.
Ono
,
J. Vac. Sci. Technol. A
37
,
051301
(
2019
).
12.
H. J.
Kim
,
L.
Wen
,
D. S.
Kim
,
K. H.
Kim
,
J. W.
Hong
,
W. J.
Chang
,
S.
Namgoong
,
D. W.
Kim
, and
G. Y.
Yeom
,
Appl. Surf. Sci.
596
,
153604
(
2022
).
13.
M. Y.
Yoon
,
H.
Yeom
,
J. H.
Kim
,
J.-R.
Jeong
, and
H.-C.
Lee
,
Appl. Surf. Sci.
595
,
153462
(
2022
).
14.
D. B.
Graves
and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
21
,
S152
(
2003
).
15.
C.-C.
Hsu
,
N.
Marchack
,
R. M.
Martin
,
C.
Pham
,
J.
Hoang
, and
J. P.
Chang
,
J. Vac. Sci. Technol. B
31
,
042201
(
2013
).
16.
S.
Huang
,
S.
Shim
,
S. K.
Nam
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
38
,
023001
(
2020
).
17.
S.
Huang
,
C.
Huard
,
S.
Shim
,
S. K.
Nam
,
I.-C.
Song
,
S.
Lu
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
37
,
031304
(
2019
).
18.
Y.
Zhang
,
C.
Huard
,
S.
Sriraman
,
J.
Belen
,
A.
Paterson
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
35
,
021303
(
2017
).
19.
H.
Watanabe
,
IEEE Trans. Semicond. Manuf.
28
,
283
(
2015
).
20.
A. P.
Mahorowala
and
H. H.
Sawin
,
J. Vac. Sci. Technol. B
20
,
1064
(
2002
).
21.
A. P.
Mahorowala
,
H. H.
Sawin
,
R.
Jones
, and
A. H.
Labun
,
J. Vac. Sci. Technol. B
20
,
1055
(
2002
).
22.
S.
Abdollahi-Alibeik
,
J. P.
McVittie
,
K. C.
Saraswat
,
V.
Sukharev
, and
P.
Schoenborn
,
J. Vac. Sci. Technol. A
17
,
2485
(
1999
).
23.
G.
Kokkoris
,
A.
Tserepi
,
A.
Boudouvis
, and
E.
Gogolides
,
J. Vac. Sci. Technol. A
22
,
1896
(
2004
).
24.
L.
Sun
,
P.
Lyu
,
Q.
Wang
,
Q.
Zhong
,
K.
Wang
, and
Y.
Chi
, “Investigation of FIN bowing formation mechanism during STI etching by virtual fabrication,” 2022 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 20-21 June 2022 (IEEE, New York, 2022), pp. 01–03.
25.
S.
Blouin
and
J.
Daligault
,
Phys. Rev. E
103
,
043204
(
2021
).
26.
N.
Fuller
,
I. P.
Herman
, and
V. M.
Donnelly
,
J. Appl. Phys.
90
,
3182
(
2001
).
27.
J.-H.
Kim
and
H.-Y.
Chang
,
Phys. Plasmas
3
,
1462
(
1996
).
28.
P.
Zhang
,
L.
Zhang
, and
L.
Xu
,
Plasma Process. Polym.
17
,
2000014
(
2020
).
29.
A.
Kumar
,
W. H.
Lee
, and
Y. L.
Wang
,
IEEE Trans. Semicond. Manuf.
34
,
177
(
2021
).
30.
R. J.
Hoekstra
,
M. J.
Grapperhaus
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
15
,
1913
(
1997
).
31.
C.
Cheng
,
K.
Guinn
,
V.
Donnelly
, and
I.
Herman
,
J. Vac. Sci. Technol. A
12
,
2630
(
1994
).
32.
J. P.
Chang
,
A. P.
Mahorowala
, and
H. H.
Sawin
,
J. Vac. Sci. Technol. A
16
,
217
(
1998
).
33.
Z.-L.
Dai
,
S.-Q.
Zhang
, and
Y.-N.
Wang
,
Vacuum
89
,
197
(
2013
).
34.
T.
Hatsuse
,
N.
Nakazaki
,
H.
Tsuda
,
Y.
Takao
,
K.
Eriguchi
, and
K.
Ono
,
J. Appl. Phys.
124
,
143301
(
2018
).
35.
M.
Mori
,
S.
Irie
,
Y.
Osano
,
K.
Eriguchi
, and
K.
Ono
,
J. Vac. Sci. Technol. A
39
,
043002
(
2021
).
36.
P.
Hartmann
et al.,
J. Phys. D: Appl. Phys.
54
,
255202
(
2021
).
37.
J.-H.
Min
,
G.-R.
Lee
,
J.-K.
Lee
,
S. H.
Moon
, and
C.-K.
Kim
,
J. Vac. Sci. Technol. B
23
,
425
(
2005
).
38.
V.
Ishchuk
,
B. E.
Volland
,
M.
Hauguth
,
M.
Cooke
, and
I. W.
Rangelow
,
J. Appl. Phys.
112
,
084308
(
2012
).
39.
C.
Steinbrüchel
,
Appl. Phys. Lett.
55
,
1960
(
1989
).
40.
I. W.
Rangelow
,
J. Vac. Sci. Technol. A
21
,
1550
(
2003
).
41.
M.
Ozgur
and
M.
Huff
,
J. Microelectromech. Syst.
26
,
456
(
2017
).
You do not currently have access to this content.