In this study, the selective area epitaxy (SAE) of InGaN/GaN nanopyramid quantum dots (QDs) on a block copolymer patterned (BCP) GaN template using metalorganic chemical vapor deposition is reported. The pattern transfer process and SAE process are developed to enable a ultrahigh density of 7–9 × 1010 cm−2 QD formation with a feature size of 20–35 nm. The growth mechanism and geometrical properties of the QDs were investigated by scanning electron microscopy and cross-sectional transmission electron microscopy, showing the nanopyramid QD structure with InGaN grown on semipolar { 1 0 1 ¯ 1 } planes. The optical characteristics of the nanopyramid QDs were examined by microphotoluminescence measurements. We observed QD emission centered at 488 and 514 nm, depending on the growth temperature employed. These emissions were found to be longer wavelength than those from a planar quantum well structure. This can be attributed to the combined effects of higher indium incorporation along the semipolar plane and a larger InGaN thickness. Furthermore, we also found that the QD emission intensity increases as the number of InGaN layers increases without wavelength shift, indicating a constant growth rate and indium incorporation along the semipolar plane after the formation of the nanopyramid structure. The internal quantum efficiency is estimated to be over 60% by comparing the photoluminescence (PL) intensity of QDs at low temperature and room temperature. PL emission wavelength shows an 11 nm blue shift, while the full width at half maximum decreases from 68 (351 meV) to 56 nm (303 meV) from room temperature to low temperature. By employing BCP lithography and SAE technique, we successfully demonstrated that ultrahigh density, small size InGaN/GaN nanopyramid QDs with visible emission were achieved, which could be a potential active region for QD light-emitting diodes and/or lasers.

1.
S. P.
DenBaars
et al,
Acta Mater.
61
,
945
(
2013
).
2.
M.
Jansen
et al,
Projection Displays XII
(
SPIE
,
Bellingham
,
2007
), Vol. 6489, pp.
50
55
.
3.
G. T.
Liu
,
A.
Stintz
,
H.
Li
,
T. C.
Newell
,
A. L.
Gray
,
P. M.
Varangis
,
K. J.
Malloy
, and
L. F.
Lester
,
IEEE J. Quantum Electron.
36
,
1272
(
2000
).
4.
Zetian
Mi
and
P.
Bhattacharya
,
IEEE J. Sel. Top. Quantum Electron.
14
,
1171
(
2008
).
5.
S.
Banyoudeh
,
A.
Abdollahinia
,
O.
Eyal
,
F.
Schnabel
,
V.
Sichkovskyi
,
G.
Eisenstein
, and
J. P.
Reithmaier
,
IEEE Photonics Technol. Lett.
28
,
2451
(
2016
).
6.
N. N.
Ledentsov
,
M.
Grundmann
,
F.
Heinrichsdorff
,
D.
Bimberg
,
V. M.
Ustinov
,
A. E.
Zhukov
,
M. V.
Maximov
,
Zh I.
Alferov
, and
J. A.
Lott
,
IEEE J. Sel. Top. Quantum Electron.
6
,
439
(
2000
).
7.
M.
Zhang
,
A.
Banerjee
,
C.
Lee
,
J. M.
Hinckley
, and
P.
Bhattacharya
,
Appl. Phys. Lett.
98
,
221104
(
2011
).
8.
A.
Banerjee
,
T.
Frost
,
S.
Jahangir
,
E.
Stark
, and
P.
Bhattacharya
,
Phys. Status Solidi C
10
,
816
(
2013
).
9.
M.
Zhang
,
P.
Bhattacharya
, and
W.
Guo
,
Appl. Phys. Lett.
97
,
011103
(
2010
).
10.
C.
Zhao
,
C. W.
Tang
,
B.
Lai
,
G.
Cheng
,
J.
Wang
, and
K. M.
Lau
,
Photonics Res.
8
,
750
(
2020
).
11.
T.
Frost
,
A.
Banerjee
,
K.
Sun
,
S. L.
Chuang
, and
P.
Bhattacharya
,
IEEE J. Quantum Electron.
49
,
923
(
2013
).
12.
14.
J.
Brault
et al,
Mater. Sci. Semicond. Process.
55
,
95
(
2016
).
15.
L. K.
Lee
,
T.
Jung
, and
P. C.
Ku
,
LEOS 2008-21st Annual Meeting of the IEEE Lasers and Electro-Optics Society
, Newport Beach, 9–13 November 2008 (
IEEE
,
New York City
,
2008
), pp. 433.
16.
L. K.
Lee
and
P. C.
Ku
,
Phys. Status Solidi C
9
,
609
(
2012
).
17.
18.
G. T.
Wang
et al, No. SAND2017-7539C. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) (2017).
19.
L. J.
Mawst
,
H.
Kim
,
W.
Wei
,
D.
Talreja
,
T. F.
Kuech
, and
P.
Gopalan
,
IEEE J. Quantum Electron.
58
,
1
(
2022
).
20.
H.
Kim
,
J.
Choi
,
Z.
Lingley
,
M.
Brodie
,
Y.
Sin
,
T. F.
Kuech
,
P.
Gopalan
, and
L. J.
Mawst
,
J. Cryst. Growth
465
,
48
(
2017
).
21.
H.
Kim
,
W.
Wei
,
T. F.
Kuech
,
P.
Gopalan
, and
L. J.
Mawst
,
Semicond. Sci. Technol.
34
,
025012
(
2019
).
22.
G.
Liu
,
H.
Zhao
,
J.
Zhang
,
J. H.
Park
,
L. J.
Mawst
, and
N.
Tansu
,
Nanoscale Res. Lett.
6
,
342
(
2011
).
23.
L. K.
Lee
,
L. K.
Aagesen
,
K.
Thornton
, and
P. C.
Ku
,
LEOS Phys. Status Solidi A
211
,
531
(
2014
).
24.
J.
Cho
,
Y. M.
Kim
,
S.
Lim
,
H.
Yeo
,
S.
Kim
,
S.
Gong
, and
Y.
Cho
,
ACS Photonics
5
,
439
(
2018
).
25.
K.
Wu
et al,
J. Appl. Phys.
115
,
123101
(
2014
).
26.
J.
Jiang
,
H.
Xu
,
L.
Chen
,
L.
Yan
,
J.
Hoo
,
S.
Guo
,
Y.
Zeng
,
W.
Guo
, and
J.
Ye
,
Photonics
8
,
157
(
2021
).
27.
H.
Yu
,
L. K.
Lee
,
T.
Jung
, and
P. C.
Ku
,
Appl. Phys. Lett.
90
,
141906
(
2007
).
28.
T.
Jung
,
L. K.
Lee
, and
P. C.
Ku
,
IEEE J. Sel. Top. Quantum Electron.
15
,
1073
(
2009
).
29.
G. F.
Yang
,
Q.
Zhang
,
J.
Wang
,
Y. N.
Lu
,
P.
Chen
,
Z. L.
Wu
,
S. M.
Gao
, and
G. Q.
Chen
,
Rev. Phys.
1
,
101
(
2016
).
30.
Y.
Ko
,
J.
Kim
,
S.
Gong
,
J.
Kim
,
T.
Kim
, and
Y.
Cho
,
ACS Photonics
2
,
515
(
2015
).
31.
S.
Le
,
C.
Hsu
,
I.
Martinovic
, and
P.
Holtz
,
Appl. Phys. Lett.
118
,
142102
(
2021
).
32.
Q.
Li
and
George T.
Wang
,
Nano Lett.
10
,
1554
(
2010
).
You do not currently have access to this content.