As the parent compound of a promising solid electrolyte material Li3xLa2/3−xTiO3, the perovskite La2/3TiO3 has potential for advancing research on Li-intercalated ionic conductors. Epitaxial La2/3TiO3 films have been grown by molecular beam epitaxy using a growth process consisting of deposition and annealing cycles, with in situ monitoring by electron diffraction. X-ray absorption spectroscopy confirms the tetravalent state of Ti in La2/3TiO3, and the as-grown films are insulating. X-ray diffraction reveals the presence of half-order peaks, indicating a doubling of the pseudocubic perovskite unit cell due to the ordering of La vacancies in alternating A-site layers. These results demonstrate that single-phase, vacancy-ordered epitaxial films of La2/3TiO3 can be stabilized with excellent crystalline and electronic properties over wafer-sized areas, making possible Li-ion intercalation studies in films with well-defined domain boundary properties. Such boundaries are known to profoundly influence Li-ion conduction within the material. Understanding the effects of domain boundaries on Li-ion conduction could lead to improvements in solid-state battery technology and pave the way for the development of more efficient and safer energy storage devices.

1.
C. N. R.
Rao
,
J.
Gopalakrishnan
, and
K.
Vidyasagar
,
Indian J. Chem.
23A
,
265
(
1984
).
2.
P. K.
Davies
,
Curr. Opin. Solid State Mater. Sci.
4
,
467
(
1999
).
3.
B. S.
Guiton
and
P. K.
Davies
,
Nat. Mater.
6
,
586
(
2007
).
4.
A. I.
Ruiz
,
M. L.
López
,
C.
Pico
, and
M. L.
Veiga
,
J. Solid State Chem.
163
,
472
(
2002
).
5.
H.
Shin
,
C.
Liu
,
S.
Godin
,
F.
Li
,
R.
Sutarto
,
B. A.
Davidson
, and
K.
Zou
,
Adv. Mater. Interface
9
,
2201475
(
2022
).
6.
M.
Abe
and
K.
Uchino
,
Mater. Res. Bull.
9
,
147
(
1974
).
7.
I.-S.
Kim
,
T.
Nakamura
,
Y.
Inaguma
, and
M.
Itoh
,
J. Solid State Chem.
113
,
281
(
1994
).
8.
M.
Itoh
,
I.-S.
Kim
,
A.
Yoshioka
,
Y.
Inaguma
, and
T.
Nakamura
, in
Advances in Superconductivity VI
, edited by
T.
Fujita
and
Y.
Shiohara
(
Springer
,
Tokyo
,
1994
).
9.
F.
Azough
,
R.
Freer
, and
B.
Schaffer
,
J. Am. Ceram. Soc.
93
,
1237
(
2010
).
10.
F.
Azough
,
W.
Wang
, and
R.
Freer
,
J. Am. Ceram. Soc.
92
,
2093
(
2009
).
11.
K.
Zou
,
S.
Ismail-Beigi
,
K.
Kisslinger
,
X.
Shen
,
D.
Su
,
F. J.
Walker
, and
C. H.
Ahn
,
APL Mater.
3
,
036104
(
2015
).
12.
M.
Nakayama
,
A.
Shirasawa
, and
T.
Saito
,
J. Ceram. Soc. Jpn.
117
,
911
(
2009
).
13.
S.
Stramare
,
V.
Thangadurai
, and
W.
Weppner
,
Chem. Mater.
15
,
3974
(
2003
).
14.
S.
Kobayashi
,
D.
Yokoe
,
Y.
Fujiwara
,
K.
Kawahara
,
Y.
Ikuhara
, and
A.
Kuwabara
,
Nano Lett.
22
,
5516
(
2022
).
15.
T.
Ohnishi
,
K.
Mitsuishi
,
K.
Nishio
, and
K.
Takada
,
Chem. Mater.
27
,
1233
(
2015
).
16.
H.
Moriwake
,
X.
Gao
,
A.
Kuwabara
,
C. A. J.
Fisher
,
T.
Kimura
,
Y. H.
Ikuhara
,
K.
Kohama
,
T.
Tojigamori
, and
Y.
Ikuhara
,
J. Power Sources
276
,
203
(
2015
).
17.
J.
Yan
,
J.
Yu
, and
B.
Ding
,
Adv. Mater.
30
,
1705105
(
2018
).
18.
C.-L.
Xu
,
W.
Xiang
,
Z.-G.
Wu
,
Y.-C.
Li
,
Y.-D.
Xu
,
W.-B.
Hua
,
X.-D.
Guo
,
X.-B.
Zhang
, and
B.-H.
Zhong
,
J. Alloys Compd.
740
,
428
(
2018
).
19.
H.-Y.
Wang
,
X.
Cheng
,
H.-F.
Li
,
J.-M.
Pan
, and
J.-H.
Hu
,
Int. J. Miner., Metall. Mater.
28
,
305
(
2021
).
20.
T.
Yang
,
Y.
Li
, and
C. K.
Chan
,
J. Power Sources
287
,
164
(
2015
).
21.
X.
Gao
et al,
J. Mater. Chem. A
2
,
843
(
2014
).
22.
F.
Aguesse
,
V.
Roddatis
,
J.
Roqueta
,
P.
García
,
D.
Pergolesi
,
J.
Santiso
, and
J. A.
Kilner
,
Solid State Ionics
272
,
1
(
2015
).
23.
M.
Yokoyama
,
T.
Ota
,
I.
Yamai
, and
J.
Takahashi
,
J. Cryst. Growth
96
,
490
(
1989
).
24.
A. N.
Bugrov
,
L. D.
Abdulaeva
,
O. I.
Silyukov
,
A. A.
Burovikhina
,
E. N.
Latysheva
,
Y. S.
Manucharov
, and
I. A.
Zvereva
,
Ceram. Int.
42
,
1698
(
2016
).
25.
L. D.
Abdulaeva
,
O. I.
Silyukov
,
Y. V.
Petrov
, and
I. A.
Zvereva
,
J. Nanomater.
2013
,
514781
(
2013
).
26.
T. C.
Kaspar
et al,
Sci. Rep.
8
,
3037
(
2018
).
27.
H.
Shin
,
C.
Liu
,
F.
Li
,
R.
Sutarto
,
B. A.
Davidson
, and
K.
Zou
,
Phys. Rev. B
101
,
214105
(
2020
).
28.
H. Y.
Sun
et al,
Nat. Commun.
9
,
2965
(
2018
).
29.
J. H.
Haeni
,
C. D.
Theis
, and
D. G.
Schlom
,
J. Electroceram.
4
,
385
(
2000
).
30.
A.
Janotti
,
B.
Jalan
,
S.
Stemmer
, and
C. G.
Van De Walle
,
Appl. Phys. Lett.
100
,
262104
(
2012
).
31.
C.
Liu
,
K.
Chang
, and
K.
Zou
,
J. Vac. Sci. Technol. B
40
,
054002
(
2022
).
32.
S.
Godin
,
B. A.
Davidson
,
R.
Sutarto
,
C.
Liu
,
F.
Li
,
I. S.
Elfimov
,
G. A.
Sawatzky
, and
K.
Zou
,
Appl. Phys. Lett.
121
,
061601
(
2022
).
33.
M. W.
Haverkort
et al,
Phys. Rev. Lett.
94
,
056401
(
2005
).
34.
H.
Han
et al,
Nat. Mater.
22
,
1128
(
2023
).
35.
F.
Izumi
and
K.
Momma
,
Solid State Phenom.
130
, 15 (
2007
).
36.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
37.
G. X.
Wang
,
P.
Yao
,
D. H.
Bradhurst
,
S. X.
Dou
, and
H. K.
Liu
,
Solid State Ionics
124
,
37
(
1999
).
38.
W. R.
Brant
,
S.
Schmid
,
A.
Kuhn
,
J.
Hester
,
M.
Avdeev
,
M.
Sale
, and
Q.
Gu
,
ChemPhysChem.
13
,
2293
(
2012
).
39.
A. M.
Alekseeva
et al,
Sci. Rep.
6
,
25624
(
2016
).
40.
S.
Maruyama
,
J.
Shin
,
X.
Zhang
,
R.
Suchoski
,
S.
Yasui
,
K.
Jin
,
R. L.
Greene
, and
I.
Takeuchi
,
Appl. Phys. Lett.
107
,
142602
(
2015
).
41.
See supplementary material online for additional XRD characterizations and the modeling of peak intensity.

Supplementary Material

You do not currently have access to this content.