Thin films of elemental metals play a very important role in modern electronic nano-devices as conduction pathways, spacer layers, spin-current generators/detectors, and many other important functionalities. In this work, by exploiting the chemistry of solid metal-organic source precursors, we demonstrate the molecular beam epitaxy synthesis of elemental Ir and Ru metal thin films. The synthesis of these metals is enabled by thermodynamic and kinetic selection of the metal phase as the metal-organic precursor decomposes on the substrate surface. Film growth under different conditions was studied using a combination of in situ and ex situ structural and compositional characterization techniques. The critical role of substrate temperature, oxygen reactivity, and precursor flux in tuning film composition and quality is discussed in the context of precursor adsorption, decomposition, and crystal growth. Computed thermodynamics quantifies the driving force for metal or oxide formation as a function of synthesis conditions and changes in chemical potential. These results indicate that bulk thermodynamics are a plausible origin for the formation of Ir metal at low temperatures, while Ru metal formation is likely mediated by kinetics.

1.
A. S.
Darling
,
Int. Metall. Rev.
18
,
91
(
1973
).
2.
L. G.
Wen
et al,
ACS Appl. Mater. Interfaces
8
,
26119
(
2016
).
3.
T.
Zhan
et al,
ACS Appl. Mater. Interfaces
14
,
7392
(
2022
).
4.
Y. H.
Lim
,
H.
Yoo
,
B. H.
Choi
,
J. H.
Lee
,
H.-N.
Lee
, and
H. K.
Lee
,
Phys. Status Solidi C
8
,
891
(
2011
).
5.
A.
Basinska
,
T. P.
Maniecki
, and
W. K.
Jozwiak
,
React. Kinet. Catal. Lett.
89
,
319
(
2006
).
6.
K.
Fujimoto
,
M.
Kameyama
, and
T.
Kunugi
,
J. Catal.
61
,
7
(
1980
).
7.
K.
Liu
,
A.
Wang
, and
T.
Zhang
,
ACS Catal.
2
,
1165
(
2012
).
8.
T.
Reier
,
M.
Oezaslan
, and
P.
Strasser
,
ACS Catal.
2
,
1765
(
2012
).
9.
B.
Fischer
,
A.
Behrends
,
D.
Freund
,
D. F.
Lupton
, and
J.
Merker
,
Platinum Met. Rev.
43
(1), 18–28 (
1999
).
10.
T.
Aaltonen
,
M.
Ritala
,
Y.-L.
Tung
,
Y.
Chi
,
K.
Arstila
,
K.
Meinander
, and
M.
Leskela
,
J. Mater. Res.
19
,
3353
(
2004
).
11.
J. M.
Hwang
et al,
J. Mater. Chem. C
9
,
3820
(
2021
).
12.
N. V.
Gelfond
,
N. B.
Morozova
,
P. P.
Semyannikov
,
S. V.
Trubin
,
I. K.
Igumenov
,
A. K.
Gutakovskii
, and
A. V.
Latyshev
,
J. Struct. Chem.
53
,
715
(
2012
).
13.
N. B.
Morozova
,
N. V.
Gelfond
,
P. P.
Semyannikov
,
S. V.
Trubin
,
I. K.
Igumenov
,
A. K.
Gutakovskii
, and
A. V.
Latyshev
,
J. Struct. Chem.
53
,
725
(
2012
).
14.
M. A.
El Khakani
,
M.
Chaker
, and
B.
Le Drogoff
,
J. Vac. Sci. Technol. A
16
,
885
(
1998
).
15.
A.
Dangwal Pandey
et al,
J. Appl. Phys.
120
,
075304
(
2016
).
16.
L. D.
Anh
,
K.
Takase
,
T.
Chiba
,
Y.
Kota
,
K.
Takiguchi
, and
M.
Tanaka
,
Adv. Mater.
33
,
2104645
(
2021
).
17.
P.
Quarterman
et al,
Nat. Commun.
9
,
2058
(
2018
).
18.
J.
Hämäläinen
,
E.
Puukilainen
,
M.
Kemell
,
L.
Costelle
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Mater.
21
,
4868
(
2009
).
19.
W.
Liao
and
J. G.
Ekerdt
,
J. Vac. Sci. Technol. A
34
,
041514
(
2016
).
20.
W.
Nunn
,
A. K.
Manjeshwar
,
J.
Yue
,
A.
Rajapitamahuni
,
T. K.
Truttmann
, and
B.
Jalan
,
Proc. Natl. Acad. Sci.
118
,
e2105713118
(
2021
).
21.
W.
Nunn
,
S.
Nair
,
H.
Yun
,
A. K.
Manjeshwar
,
A.
Rajapitamahuni
,
D.
Lee
,
K. A.
Mkhoyan
, and
B.
Jalan
,
APL Mater.
9
,
091112
(
2021
).
22.
K. I.
Karakovskaya
,
S. I.
Dorovskikh
,
E. S.
Vikulova
,
I. Y.
Ilyin
,
K. V.
Zherikova
,
T. V.
Basova
, and
N. B.
Morozova
,
Coatings
11
,
78
(
2021
).
23.
I. K.
Igumenov
,
P. P.
Semyannikov
,
S. V.
Trubin
,
N. B.
Morozova
,
N. V.
Gelfond
,
A. V.
Mischenko
, and
J. A.
Norman
,
Surf. Coat. Technol.
201
,
9003
(
2007
).
24.
B.
Jalan
,
R.
Engel-Herbert
,
N. J.
Wright
, and
S.
Stemmer
,
J. Vac. Sci. Technol. A
27
,
461
(
2009
).
25.
W.
Nunn
,
T. K.
Truttmann
, and
B.
Jalan
,
J. Mater. Res.
36
,
4846
(
2021
).
26.
J. K.
Kawasaki
,
D.
Baek
,
H.
Paik
,
H. P.
Nair
,
L. F.
Kourkoutis
,
D. G.
Schlom
, and
K. M.
Shen
,
Phys. Rev. Mater.
2
, 054206 (
2018
).
27.
H. P.
Nair
et al,
APL Mater.
6
, 101108 (
2018
).
28.
M.
Uchida
,
W.
Sano
,
K. S.
Takahashi
,
T.
Koretsune
,
Y.
Kozuka
,
R.
Arita
,
Y.
Tokura
, and
M.
Kawasaki
,
Phys. Rev. B
91
,
241119(R)
(
2015
).
29.
S.
Nair
et al,
Nat. Nanotechnol.
18, 1005 (
2023
).
30.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
,
J. Phys. Chem. Lett.
11
,
8208
(
2020
).
31.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
32.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
33.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
34.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
35.
C. J.
Bartel
,
J. Mater. Sci.
57
,
10475
(
2022
).
36.
C. J.
Bartel
,
A. W.
Weimer
,
S.
Lany
,
C. B.
Musgrave
, and
A. M.
Holder
,
npj Comput. Mater.
5
,
4
(
2019
).
37.
I.
Barin
,
Thermochemical Data of Pure Substances
(VCH Publishers, Inc., New York,
1995
), pp.
33
34
.
38.
C. J.
Bartel
et al,
Nat. Commun.
9
,
4168
(
2018
).
39.
K.
Knapas
and
M.
Ritala
,
Chem. Mater.
23
,
2766
(
2011
).
40.
J. K.
Kawasaki
et al,
Phys. Rev. Lett.
121
,
176802
(
2018
).
41.
J.
Hämäläinen
,
M.
Kemell
,
F.
Munnik
,
U.
Kreissig
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Mater.
20
,
2903
(
2008
).
42.
K.
Klyukin
,
A.
Zagalskaya
, and
V.
Alexandrov
,
J. Phys. Chem. C
122
,
29350
(
2018
).
43.
H.
Perron
,
C.
Domain
,
J.
Roques
,
R.
Drot
,
E.
Simoni
, and
H.
Catalette
,
Theor. Chem. Acc.
117
,
565
(
2007
).
44.
A.
Sawa
,
H.
Obara
, and
S.
Kosaka
,
Appl. Phys. Lett.
64
,
649
(
1994
).
45.
I. E.
Merkulova
,
J. Phys.: Conf. Ser.
2119
,
012121
(
2021
).
46.
P.
Zhao
et al,
ACS Catal.
9
,
2768
(
2019
).
47.
See supplementary material online for film thickness, RHEED patterns, rate-dependent growth of Ru/RuO2 films, and crystal structures of Ir, Ru, and TiO2.

Supplementary Material

You do not currently have access to this content.