Atomic layer etching is intrinsically dynamic as it involves sequential and repeated exposures of a surface to be etched with different species at different energies. The composition and structure of the near surface region change in both time and depth. Full understanding of this process requires resolving both temporal and spatial variations. In this work, we consider silicon (Si) atomic layer etching (ALE) by alternating exposure to chlorine gas (Cl 2) and argon ions (Ar +). Molecular dynamics (MD) simulations are compared to experimental measurements with the aim of better understanding the dynamics of ALE and to test the simulation procedure. The simulations help to more fully interpret the experimental measurements. Optical emission measured just above the surface being etched can be related to etch products and can, therefore, be directly compared to simulation predictions. The simulations capture the measured initial product distribution leaving the surface and match the measured etch per cycle reasonably well. While simulations demonstrate the importance of ion-induced surface damage and mixing into a layer below the surface, the depth of which depends mainly on ion energy, the experiments suggest there is more Cl mixed into the layer than the MD procedure predicts.

1.
C. T.
Carver
,
J. J.
Plombon
,
P. E.
Romero
,
S.
Suri
,
T. A.
Tronic
, and
R. B.
Turkot
, Jr.
,
ECS J. Solid State Sci. Technol.
4
,
N5005
(
2015
).
2.
T.
Faraz
,
F.
Roozeboom
,
H. C. M.
Knoops
, and
W. M. M.
Kessels
,
ECS J. Solid State Sci. Technol.
4
,
N5023
(
2015
).
3.
G. S.
Oehrlein
,
D.
Metzler
, and
C.
Li
,
ECS J. Solid State Sci. Technol.
4
,
N5041
(
2015
).
4.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802–1–14
(
2015
).
5.
J.
Chang
and
J. P.
Chang
,
J. Phys. D: Appl. Phys.
50
,
253001–1–23
(
2017
).
6.
K. J.
Kanarik
,
S.
Tan
, and
R. A.
Gottscho
,
J. Phys. Chem. Lett.
9
,
4814
(
2018
).
7.
K.
Arts
,
S.
Hamaguchi
,
T.
Ito
,
K.
Karahashi
,
H. C. M.
Knoops
,
A. J. M.
Mackus
, and
W. M. M. E.
Kessels
,
Plasma Sources Sci. Technol.
31
,
103002–1–20
(
2022
).
8.
D.
Kim
,
J.
Kim
,
D.
Ahn
,
J.
Choe
,
J.
Kim
,
E.
Jung
, and
S.
Pyo
,
Electron. Mater. Lett.
19
,
424
(
2023
).
9.
T.
Matsuura
,
J.
Murota
,
Y.
Sawada
, and
T.
Ohmi
,
Appl. Phys. Lett.
63
,
2803
(
1993
).
10.
K.
Suzue
,
T.
Matsuura
,
J.
Murota
,
Y.
Sawada
, and
T.
Ohmi
,
Appl. Surf. Sci.
82/83
,
422
(
1994
).
11.
S. D.
Athavale
and
D. J.
Economou
,
J. Vac. Sci. Technol. B
14
,
3702
(
1996
).
12.
B.
Kim
,
S.
Chung
, and
S. M.
Cho
,
Appl. Surf. Sci.
187
,
124
(
2002
).
13.
S.
Park
,
K.
Min
,
B.
Yoon
,
D.
Lee
, and
G.
Yeom
,
Jpn. J. Appl. Phys.
44
,
389
(
2005
).
14.
S. D.
Athavale
and
D. J.
Economou
,
J. Vac. Sci. Technol. A
13
,
966
(
1995
).
15.
E. J. C.
Tinacba
,
M.
Isobe
, and
S.
Hamaguchi
,
J. Vac. Sci. Technol. A
39
,
042603–1–11
(
2021
).
16.
J. R.
Vella
,
D.
Humbird
, and
D. B.
Graves
,
J. Vac. Sci. Technol. B
40
,
023205–1–9
(
2022
).
17.
J. R.
Vella
and
D. B.
Graves
,
J. Vac. Sci. Technol. A
41, 042601 (2023).
18.
Q.
Hao
,
P.
Kim
,
S.
Nam
,
S.
Kang
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. A
41
,
032605–1–9
(
2023
).
19.
T.
Ma
,
T.
List
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. A
35
,
031303
(
2017
).
20.
T.
Ma
,
T.
List
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. A
36
,
031305
(
2018
).
21.
T.
List
,
T.
Ma
,
P.
Arora
,
V. M.
Donnelly
, and
S.
Shannon
,
Plasma Sources Sci. Technol.
28
,
025005
(
2019
).
22.
P.
Arora
,
T.
Nguyen
,
A.
Chawla
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. A
37
,
061303
(
2019
).
23.
T.
Ma
,
T.
List
,
P.
Arora
, and
V. M.
Donnelly
,
J. Appl. Phys.
125
,
023301
(
2019
).
24.
P.
Arora
,
J.
Cho
,
R.
Cervantes
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. A
38
,
063004
(
2020
).
25.
D. W.
Brenner
,
O. A.
Shenderova
,
J. A.
Harrison
,
S. J.
Stuart
,
B.
Ni
, and
S. B.
Sinnott
,
J. Phys.: Condens. Matter
14
,
783
(
2002
).
26.
D.
Humbird
and
D. B.
Graves
,
J. Chem. Phys.
120
,
2405
(
2004
).
27.
J. R.
Vella
and
D. B.
Graves
,
J. Vac. Sci. Technol. A
40
,
063203–1–7
(
2022
).
28.
G.
Moliére
,
Z. Naturforschung A
2
,
133
(
1947
).
29.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
30.
D. W.
Humbird
, “Computational studies of plasma-surface interactions,” Ph.D. thesis (University of California, Berkeley, 2004).
31.
See supplementary material online for surface flux and fluence calculations and explicit evidence that a larger Cl2 fluence will not result in more Cl uptake into the Si slab in the MD simulations.
32.
A.
Stukowski
,
Modelling Simul. Mater. Sci. Eng.
18
,
015012–1–7
(
2010
).
33.
P.
Brault
,
P.
Ranson
,
H.
Estrade-Szwarckopf
, and
B.
Rousseau
,
J. Appl. Phys.
68
,
1702
(
1990
).
34.
P.
Brault
,
J. Phys.: Condens. Matter
3
,
7073
(
1991
).
35.
H. F.
Winters
and
J. W.
Coburn
,
Surf. Sci. Rep.
14
,
161
(
1992
).
36.
J. W.
Coburn
,
Appl. Phys. A
59
,
451
(
1994
).
37.
S. S.
Kaler
,
Q.
Lou
,
V. M.
Donnelly
, and
D. J.
Econmou
,
J. Vac. Sci. Technol. A
34
,
041301–1–8
(
2016
).
38.
P.
Arora
,
T.
Nguyen
,
A.
Chawla
,
S.
Nam
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. A
37
,
061303–1–9
(
2019
).
39.
O.
Mourey
,
C.
Petit-Etienne
,
G.
Cunge
,
M.
Darnon
,
E.
Despiau-Pujo
,
P.
Birchon
,
E.
Lattu-Romain
,
M.
Pons
, and
O.
Joubert
,
J. Vac. Sci. Technol. A
34
,
041306–1–12
(
2016
).
40.
A. F.
Voter
,
Phys. Rev. B
57
,
R13985
(
1998
).
41.
C.
Abrams
and
G.
Bussi
,
Entropy
16
,
163
(
2014
).

Supplementary Material

You do not currently have access to this content.