Atomic layer deposition (ALD) was used to coat a porous matrix of carbon fibers known as FiberForm with Al2O3 to improve oxidation resistance. Static trimethylaluminum (TMA) and H2O exposures for Al2O3 ALD were used to obtain the uniform coating of this high porosity material. The carbon surfaces were initially functionalized for Al2O3 ALD by exposure to sequential exposures of nitrogen dioxide and TMA. A gravimetric model was developed to predict the mass gain per cycle under conditions when the ALD reactions reached saturation during each reactant exposure. The uniformity of the Al2O3 ALD coating on FiberForm was confirmed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) analysis. The SEM, EDS, and gravimetric models were all consistent with a uniform Al2O3 ALD coating on the porous carbon fiber network when the ALD reactions reached saturation on the entire surface area. In contrast, the profile of the Al2O3 ALD coating on the FiberForm was also characterized using undersaturation conditions when the ALD reactions did not reach saturation throughout the FiberForm sample. Based on comparisons with results from models for ALD in porous substrates, these Al2O3 coverage profiles were consistent with diffusion-limited Al2O3 ALD. Oxidation of the FiberForm and the Al2O3 ALD-coated FiberForm was also investigated by thermogravimetric analysis (TGA). TGA revealed that a 50 nm thick Al2O3 coating deposited using 400 Al2O3 ALD cycles enhanced the oxidation resistance. The Al2O3 ALD coating increased the oxidation onset temperature by ∼200 °C from 500 to 700 °C. The oxidation of the FiberForm removed carbon and left the Al2O3 ALD coating behind as a white “skeleton” that preserved the shape of the original FiberForm sample. The Al2O3 ALD coating also decreased the oxidation rate of the FiberForm by ∼30%. The oxidation rate of the Al2O3 ALD-coated FiberForm samples was constant and independent of the thickness of the Al2O3 ALD coating. This behavior suggested that the oxidation is dependent on the competing O2 diffusion into the FiberForm and CO2 diffusion out of the FiberForm.

1.
D. D.
Jayaseelan
,
Y.
Xin
,
L.
Vandeperre
,
P.
Brown
, and
W. E.
Lee
,
Compos. Part B
79
,
392
(
2015
).
2.
O.
Uyanna
and
H.
Najafi
,
Acta Astronaut
176
,
341
(
2020
).
3.
G.
Pulci
,
J.
Tirillò
,
F.
Marra
,
F.
Fossati
,
C.
Bartuli
, and
T.
Valente
,
Compos. Part A
41
,
1483
(
2010
).
4.
M.
Rivier
,
J.
Lachaud
, and
P. M.
Congedo
,
Aerosp. Sci. Technol.
84
,
1059
(
2019
).
5.
J.
Koo
,
W.
Ho
,
M.
Bruns
, and
O.
Ezekoye
, “
A review of numerical and experimental characterization of thermal protection materials part ii: Properties characterization,
” in
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Honolulu, Hawaii, April 23-26, 2007 (American Institute of Aeronautics and Astronautics, Reston, VA,
2007
). p.
2131
.
6.
9.
N. S.
Jacobson
and
D. M.
Curry
,
Carbon
44
,
1142
(
2006
).
10.
S.
Chen
,
X.
Qiu
,
B.
Zhang
,
J.
Xu
,
F.
Zhong
,
B.
Zhu
,
Y.
Zhang
,
J.
Ou-Yang
, and
X.
Yang
,
J. Alloys Compd.
886
,
161143
(
2021
).
11.
A. K.
Roy
,
W.
Baumann
,
S.
Schulze
,
M.
Hietschold
,
T.
Mäder
,
D. J.
Nestler
,
B.
Wielage
, and
W. A.
Goedel
,
J. Am. Ceram. Soc.
94
,
2014
(
2011
).
12.
S.
Latzel
,
R.
Vaßen
, and
D.
Stöver
,
J. Therm. Spray Technol.
14
,
268
(
2005
).
13.
E. L.
Corral
and
R. E.
Loehman
,
J. Am. Ceram. Soc.
91
,
1495
(
2008
).
15.
M. D.
Groner
,
F. H.
Fabreguette
,
J. W.
Elam
, and
S. M.
George
,
Chem. Mater.
16
,
639
(
2004
).
16.
P. F.
Carcia
,
R. S.
McLean
,
M. D.
Groner
,
A. A.
Dameron
, and
S. M.
George
,
J. Appl. Phys.
106
,
023533
(
2009
).
17.
P. F.
Carcia
,
R. S.
McLean
,
M. H.
Reilly
,
M. D.
Groner
, and
S. M.
George
,
Appl. Phys. Lett.
89
,
031915
(
2006
).
18.
A. A.
Dameron
,
S. D.
Davidson
,
B. B.
Burton
,
P. F.
Carcia
,
R. S.
McLean
, and
S. M.
George
,
J. Phys. Chem. C
112
,
4573
(
2008
).
19.
M. D.
Groner
,
S. M.
George
,
R. S.
McLean
, and
P. F.
Carcia
,
Appl. Phys. Lett.
88
,
051907
(
2006
).
20.
T.
Hirvikorpi
,
M.
Vähä-Nissi
,
T.
Mustonen
,
E.
Iiskola
, and
M.
Karppinen
,
Thin Solid Films
518
,
2654
(
2010
).
21.
T. O.
Kääriäinen
,
P.
Maydannik
,
D. C.
Cameron
,
K.
Lahtinen
,
P.
Johansson
, and
J.
Kuusipalo
,
Thin Solid Films
519
,
3146
(
2011
).
22.
R.
Cooper
,
H. P.
Upadhyaya
,
T. K.
Minton
,
M. R.
Berman
,
X. H.
Du
, and
S. M.
George
,
Thin Solid Films
516
,
4036
(
2008
).
24.
A. K.
Roy
,
S.
Schulze
,
M.
Hietschold
, and
W. A.
Goedel
,
Carbon
50
,
761
(
2012
).
25.
V.
Cremers
,
R. L.
Puurunen
, and
J.
Dendooven
,
Appl. Phys. Rev.
6
,
021302
(
2019
).
26.
J. W.
Elam
,
D.
Routkevitch
,
P. P.
Mardilovich
, and
S. M.
George
,
Chem. Mater.
15
,
3507
(
2003
).
27.
X. B.
Meng
,
X. Q.
Yang
, and
X. L.
Sun
,
Adv. Mater.
24
,
3589
(
2012
).
28.
C.
Detavernier
,
J.
Dendooven
,
S. P.
Sree
,
K. F.
Ludwig
, and
J. A.
Martens
,
Chem. Soc. Rev.
40
,
5242
(
2011
).
29.
C.-W.
Kwon
,
J.-W.
Son
,
J.-H.
Lee
,
H.-M.
Kim
,
H.-W.
Lee
, and
K.-B.
Kim
,
Adv. Funct. Mater.
21
,
1154
(
2011
).
30.
T. M.
Onn
,
R.
Kungas
,
P.
Fornasiero
,
K.
Huang
, and
R. J.
Gorte
,
Inorganics
6
,
34
(
2018
).
31.
A.
Yanguas-Gil
and
J. W.
Elam
,
Chem. Vap. Deposition
18
,
46
(
2012
).
32.
T.
Keuter
,
N. H.
Menzler
,
G.
Mauer
,
F.
Vondahlen
,
R.
Vaßen
, and
H. P.
Buchkremer
,
J. Vac. Sci. Technol. A
33
,
01A
(
2015
).
33.
C.
Bae
,
H.
Kim
,
E.
Kim
,
H. G.
Park
, and
H.
Shin
,
Chem. Mater.
30
,
4748
(
2018
).
34.
J. W.
Elam
,
M. D.
Groner
, and
S. M.
George
,
Rev. Sci. Instrum.
73
,
2981
(
2002
).
35.
A. W.
Ott
,
J. W.
Klaus
,
J. M.
Johnson
, and
S. M.
George
,
Thin Solid Films
292
,
135
(
1997
).
36.
A. C.
Dillon
,
A. W.
Ott
,
J. D.
Way
, and
S. M.
George
,
Surf. Sci.
322
,
230
(
1995
).
37.
D. B.
Farmer
and
R. G.
Gordon
,
Electrochem. Solid State Lett.
8
,
G89
(
2005
).
38.
D. B.
Farmer
and
R. G.
Gordon
,
Nano Lett.
6
,
699
(
2006
).
39.
A. S.
Cavanagh
,
C. A.
Wilson
,
A. W.
Weimer
, and
S. M.
George
,
Nanotechnology
20
,
255602
(
2009
).
40.
Brody K. Bessire based on tomography values from NASA Ames Laboratory, personal communication (2022).
41.
W.
Szmyt
,
C.
Guerra-Nuñez
,
L.
Huber
,
C.
Dransfeld
, and
I.
Utke
,
Chem. Mater.
34
,
203
(
2022
).
42.
J. T.
Gaskins
et al,
ECS J. Solid State Sci. Technol.
6
,
N189
(
2017
).
43.
C.
Pradere
and
C.
Sauder
,
Carbon
46
,
1874
(
2008
).
44.
S. H.
Jen
,
J. A.
Bertrand
, and
S. M.
George
,
J. Appl. Phys.
109
,
084305
(
2011
).
45.
S. H.
Jen
,
S. M.
George
,
R.
McLean
, and
P.
Carcia
,
ACS Appl. Mater. Interfaces
5
,
1165
(
2013
).
46.
J. A.
Murdzek
,
A.
Rajashekhar
,
R. S.
Makala
, and
S. M.
George
,
J. Vac. Sci. Technol. A
39
,
042602
(
2021
).
47.
S. K.
Lee
,
S. Y.
Park
,
Y. S.
Yi
, and
J.
Moon
,
J. Phys. Chem. C
114
,
13890
(
2010
).
48.
P.
Nayar
,
A.
Khanna
,
D.
Kabiraj
,
S. R.
Abhilash
,
B. D.
Beake
,
Y.
Losset
, and
B.
Chen
,
Thin Solid Films
568
,
19
(
2014
).
49.
S.
Jakschik
,
U.
Schroeder
,
T.
Hecht
,
M.
Gutsche
,
H.
Seidl
, and
J. W.
Bartha
,
Thin Solid Films
425
,
216
(
2003
).
50.
L.
Bloch
,
Y.
Kauffmann
, and
B.
Pokroy
,
Cryst. Growth Des.
14
,
3983
(
2014
).
You do not currently have access to this content.