Germanium exhibits superior hole and electron mobility compared with silicon, making it a promising candidate for replacement of silicon in certain future CMOS applications. In such applications, achieving atomically clean Ge surfaces and the subsequent deposition of ultrathin passivation barriers without interfacial reaction are critical. In this study, we present in situ x-ray photoelectron spectroscopy (XPS) investigations of hydrocarbon removal from the Ge surface utilizing atomic oxygen at room temperature, as well as removal of hydrocarbons and of germanium oxide (GeO2) through atomic hydrogen treatment at 350 °C. Subsequently, atomic layer deposition (ALD) was used to create a protective layer of hexagonal boron nitride (h-BN) with an average thickness of 3 monolayers (ML). Tris(dimethylamino)borane and ammonia precursors were utilized at 450 °C for the deposition process. Intermittent in situ XPS analysis during ALD confirmed h-BN growth, stoichiometry, and the absence of interfacial reaction with Ge. XPS analysis after subsequent exposure of the Ge film with a h-BN overlayer of ∼9 Å average thickness to 7.2 × 104 l of atomic O (O3P) at room temperature yielded no evidence of Ge oxidation, with only the surface layer of the h-BN film exhibiting oxidation. These results present a practical and scalable route toward the preparation of clean Ge surfaces and subsequent deposition of protective, nanothin h-BN barriers for subsequent processing.

1.
K.
Watanabe
,
T.
Taniguchi
, and
H.
Kanda
,
Nat. Mater.
3
,
404
(
2004
).
3.
G. R.
Bhimanapati
et al,
ACS Nano
9
,
11509
(
2015
).
4.
P. S.
Goley
and
M. K.
Hudait
,
Materials
7
,
2301
(
2014
).
5.
R.
Chau
,
B.
Doyle
,
S.
Datta
,
J.
Kavalieros
, and
K.
Zhang
,
Nat. Mater.
6
,
810
(
2007
).
6.
S. K.
Sahari
,
H.
Murakami
,
T.
Fujioka
,
T.
Bando
,
A.
Ohta
,
K.
Makihara
,
S.
Higashi
, and
S.
Miyazaki
,
Jpn. J. Appl. Phys.
50
,
04DA12
(
2011
).
7.
N.
Halim
,
S.
Sahari
,
A.
Hamzah
,
B.
Majlis
,
S.
Marini
,
L.
Hasanah
, and
M.
Kashif
,
IEEE International Conference on Semiconductor Electronics (ICSE)
, Kuala Lumpur, 15–17 August 2018 (
IEEE
,
2018
), pp.
169
172
.
9.
J.
Akola
and
R. O.
Jones
,
Phys. Rev. B
79
,
134118
(
2009
).
10.
D. J.
Paul
,
Semicond. Sci. Technol.
19
,
R75
(
2004
).
11.
U. R.
Pfeiffer
,
J.
Grzyb
,
D.
Liu
,
B.
Gaucher
,
T.
Beukema
,
B. A.
Floyd
, and
S. K.
Reynolds
,
IEEE Trans. Microw. Theory Tech.
54
,
3387
(
2006
).
12.
S. I.
Sato
,
T.
Ohshima
, and
M.
Imaizumi
,
J. Appl. Phys.
105
,
044504
(
2009
).
13.
U. K.
Thiele
,
Int. J. Polym. Mater.
50
,
387
(
2001
).
14.
K. L.
Wang
,
D.
Cha
,
J.
Liu
, and
C.
Chen
,
Proc. IEEE
95
,
1866
(
2007
).
15.
16.
W. E.
Parker
,
W. M.
Buckley
,
S. A.
Kreek
,
A. J.
Caffrey
,
G. J.
Mauger
,
A. D.
Lavietes
, and
A. D.
Dougan
,
Proc. SPIE Penetr. Radiat. Syst. Appl.
43
,
3769
(
1999
).
17.
M.
Walker
,
M. S.
Tedder
,
J. D.
Palmer
,
J. J.
Mudd
, and
C. F.
McConville
,
Appl. Surf. Sci.
1-7
,
0169
(
2016
).
20.
J. A.
Kubby
,
J. E.
Griffith
,
R. S.
Becker
, and
J. S.
Vickers
,
Phys. Rev. B
36
,
6079
(
1987
).
21.
R.
Rossmann
,
H. L.
Mayerheim
,
V.
Jahns
,
J.
Wever
,
W.
Moritz
,
D.
Wolf
,
D.
Dornisch
, and
H.
Schulz
,
Surf. Sci.
279
,
199
(
1992
).
22.
J.
Kim
,
J.
McVittie
,
K.
Saraswat
,
Y.
Nishi
,
S.
Liu
, and
S.
Tan
,
ECS Trans.
3
,
1191
(
2006
).
23.
J. Y.
Kim
,
J.
McVittie
,
K.
Saraswat
, and
Y.
Nishi
,
Solid State Phenom.
134
,
33
(
2007
).
24.
D.
Bodlaki
,
H.
Yamamoto
,
D. H.
Waldeck
, and
E.
Borgue
,
Surf. Sci.
543
,
63
(
2003
).
26.
M.
Scardamaglia
,
C.
Struzzi
,
A.
Zakharov
,
N.
Reckinger
,
P.
Zeller
,
M.
Amati
, and
L.
Gregoratti
,
ACS Appl. Mater. Interfaces
11
,
29448
(
2019
).
27.
J.
Kwak
,
Y.
Jo
,
S. D.
Park
,
N. Y.
Kim
,
S. Y.
Kim
,
H. J.
Shin
,
Z.
Lee
,
S. Y.
Kim
, and
S. Y.
Kwon
,
Nat. Commun.
8
,
1549
(
2017
).
28.
A. K.
Geiman
and
I. V.
Grigorieva
,
Nature
499
,
419
(
2013
).
30.
M.
Galbiati
,
A. C.
Stoot
,
D. M. A.
Mackenzie
,
P.
Bøggild
, and
L.
Camilli
,
Sci. Rep.
7
,
39770
(
2017
).
31.
L.
Shen
,
Y.
Zhao
,
Y.
Wang
,
R.
Song
,
Q.
Yao
,
S.
Chen
, and
Y.
Chai
,
J. Mater. Chem. A
4
,
5044
(
2016
).
32.
H. L.
Li
,
J.
Cervenka
,
K.
Watanabe
,
T.
Taniguchi
, and
Y.
Chen
,
ACS Nano
8
,
1457
(
2014
).
33.
A.
Pilli
,
J.
Jones
,
N.
Chugh
,
J.
Kelber
,
F.
Pasquale
, and
A.
LaVoie
,
J. Vac. Sci. Technol. A
37
,
041505
(
2019
).
34.
G. M.
Adema
,
L. T.
Hwang
,
G. A.
Rinne
, and
I.
Turlik
,
IEEE Trans. Compon. Hybrids Manuf. Technol.
16
,
53
(
1993
).
35.
J.
Li
,
Y.
Shacham-Diamond
,
J. W.
Mayer
, and
E. G.
Colgan
,
Proceedings of VLSI Multilevel Interconnection Conference
, Santa Clara, CA, 11–12 June 1991 (IEEE, Piscataway, NJ,
1991
), p.
153
.
36.
C. L.
Lo
,
M.
Catalano
, and
K. K. H.
Smithe
,
Npj 2D Mater. Appl.
1
,
42
(
2017
).
37.
M. A.
Goldman
,
D. B.
Graves
,
G. A.
Antonelli
,
S. P.
Behera
, and
J. A.
Kelber
,
J. Appl. Phys.
106
,
013311
(
2009
).
38.
M.
Chaudhari
,
J.
Du
,
S.
Behera
,
S.
Manandhar
,
Sneha
Gaddam
, and
J.
Kelber
,
Appl. Phys. Lett.
94
,
204102
(
2009
).
39.
A.
Pilli
,
V.
Lee
,
J.
Jones
,
N.
Chugh
,
J.
Du
,
F.
Pasquale
,
A.
LaVoie
, and
J.
Kelber
,
J. Phys. Chem. C
124
,
25846
(
2020
).
40.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
42.
S.
Rajendran
,
A.
Pilli
,
O.
Omolere
,
J.
Kelber
, and
L. M. R.
Arava
,
Chem. Mater.
33
,
3401
(
2021
).
43.
L.
Wang
,
B.
Wu
,
J.
Chen
,
H.
Liu
,
P.
Hu
, and
Y.
Liu
,
Adv. Mater.
26
,
1559
(
2014
).
44.
A.
Pilli
,
J.
Jones
,
V.
Lee
,
N.
Chugh
,
J.
Kelber
,
F.
Pasquale
, and
A.
LaVoie
,
J. Vac. Sci. Technol. A
36
,
061503
(
2018
).
45.
R. B.
Shalvoy
,
G. B.
Fisher
, and
P. J.
Stiles
,
Phys. Rev. B
15
,
1680
(
1977
).
47.
M. P.
Seah
,
Practice Surface Analysis
, 2nd ed., edited by
D.
Briggs
and
M. P.
Seah
(
John Wiley & Sons
,
West Sussex
,
1997
), pp.
200
255
.
48.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interf. Anal.
35
,
268
(
2003
).
49.
B.
Kalkofen
,
A. A.
Amusan
,
M. S.
Bukhari
,
B.
Garke
,
M.
Lisker
,
H.
Gargouri
, and
E. P.
Burte
,
J. Vac. Sci. Technol. A
33
,
N 031512
(
2015
).
50.
Y.
Zhang
,
A.
Savara
, and
D. R.
Mullins
,
J. Phys. Chem. C
121
,
23436
(
2017
).
51.
P. Y.
Timbrell
,
M. K.
Puchert
, and
R. N.
Lamb
,
Surf. Interf. Anal.
21
,
731
(
1994
).
52.
C.
Uros
,
Mater. Technol.
45
,
179
(
2011
).
53.
B. V.
Crist
,
J. Electron Spec. Relat. Phenom.
231
, 75 (
2018
).
54.
A.
Pakdel
,
Y.
Bando
, and
D.
Golberg
,
ACS Nano
8
,
10631
(
2014
).
55.
J. D.
Ferguson
,
A. W.
Weimer
, and
S. M.
George
,
Thin Solid Films
413
,
16
(
2002
).
56.
A. L.
Schwaner
,
E. D.
Pylant
, and
J. M.
White
,
J. Vac. Sci. Technol. A
14
,
1453
(
1996
).
57.
N. R.
Glavin
,
A. R.
Waite
,
C.
Muratore
,
J. E.
Bultman
,
J.
Hu
,
J. J.
Gengler
,
A. A.
Voevodin
, and
T. S.
Fisher
,
Surf. Coat. Technol.
397
,
126017
(
2020
).
58.
R.
Zedlitz
,
M.
Heintze
, and
M. B.
Schubert
,
J. Non-Cryst. Solids
198-200
,
403
(
1996
).
60.
N. R.
Glavin
et al,
Adv. Funct. Mater.
26
,
2640
(
2016
).
61.
M. A.
Uddin
,
N.
Glavin
,
A.
Singh
,
R.
Naguy
,
M.
Jespersen
,
A.
Voevodin
, and
G.
Koley
,
Appl. Phys. Lett.
107
,
203110
(
2015
).
62.
S.
Mehdi
,
S.
Esfahlan
,
H. G.
Kim
,
S. H.
Hyun
,
J. H.
Choi
,
H. S.
Hwang
,
E. T.
Kim
,
H. G.
Park
, and
J. H.
Lee
,
ACS Appl. Mater. Interfaces
15
,
7274
(
2023
).
63.
64.
Z.
Lu
et al,
ACS Appl. Mater. Interfaces
14
,
25984
(
2022
).
65.
P. B.
Mirkarimi
,
K. F.
McCarty
, and
D. L.
Medlin
,
Mater. Sci. Eng. R. Rep.
21
,
47
(
1997
).
66.
X.
Guo
,
B.
Xu
,
W.
Zhang
,
Z.
Cai
, and
Z.
Wen
,
Appl. Surf. Sci.
321
,
94
(
2014
).
68.
A. A.
Kobelev
,
Y. V.
Barsukov
,
N. A.
Andrianov
, and
A. S.
Smirnov
,
J. Phys. Conf. Ser.
586
,
012013
(
2015
).
69.
K. A.
Simonov
,
N. A.
Vinogradov
,
M. L.
Ng
,
A. S.
Vinogradov
,
N.
Mårtensson
, and
A. B.
Preobrajenski
,
Surf. Sci.
606
,
564
(
2012
).
70.
P. R.
Kidambi
,
R.
Blume
,
J.
Kling
,
J. B.
Wagner
,
C.
Baehtz
,
R. S.
Weatherup
,
R.
Schloegl
,
B. C.
Bayer
, and
S.
Hofmann
,
Chem. Mater.
26
,
6380
(
2014
).
71.
C.-C.
Hsu
,
M. A.
Nierode
,
J. W.
Coburn
, and
D. B.
Graves
,
J. Phys. D: Appl. Phys.
39
,
3272
(
2006
).
72.
H. C. M.
Knoops
,
E.
Langereis
,
M. C. M.
Van de Sanden
, and
W. M. M.
Kessels
,
J. Electrochem. Soc.
157
,
G241
(
2010
).
73.
See supplementary material online for Comparison of reported XPS Binding energies of deposited h-BN to a-BN and C 1s XPS peak intensity for before and After 22 TDMAB/NH3.

Supplementary Material

You do not currently have access to this content.