Material characterization techniques are widely used to characterize the physical and chemical properties of materials at the nanoscale and, thus, play central roles in material scientific discoveries. However, the large and complex datasets generated by these techniques often require significant human effort to interpret and extract meaningful physicochemical insights. Artificial intelligence (AI) techniques such as machine learning (ML) have the potential to improve the efficiency and accuracy of surface analysis by automating data analysis and interpretation. In this perspective paper, we review the current role of AI in surface analysis and discuss its future potential to accelerate discoveries in surface science, materials science, and interface science. We highlight several applications where AI has already been used to analyze surface analysis data, including the identification of crystal structures from XRD data, analysis of XPS spectra for surface composition, and the interpretation of TEM and SEM images for particle morphology and size. We also discuss the challenges and opportunities associated with the integration of AI into surface analysis workflows. These include the need for large and diverse datasets for training ML models, the importance of feature selection and representation, and the potential for ML to enable new insights and discoveries by identifying patterns and relationships in complex datasets. Most importantly, AI analyzed data must not just find the best mathematical description of the data, but it must find the most physical and chemically meaningful results. In addition, the need for reproducibility in scientific research has become increasingly important in recent years. The advancement of AI, including both conventional and the increasing popular deep learning, is showing promise in addressing those challenges by enabling the execution and verification of scientific progress. By training models on large experimental datasets and providing automated analysis and data interpretation, AI can help to ensure that scientific results are reproducible and reliable. Although integration of knowledge and AI models must be considered for the transparency and interpretability of models, the incorporation of AI into the data collection and processing workflow will significantly enhance the efficiency and accuracy of various surface analysis techniques and deepen our understanding at an accelerated pace.

1.
W.
Khan
,
A.
Daud
,
J. A.
Nasir
, and
T.
Amjad
,
Kuwait J. Sci.
43
,
95
(
2016
).
2.
R.
Socher
,
Y.
Bengio
, and
C. D.
Manning
, “Deep learning for NLP (without magic),” in Tutorial Abstracts of ACL 2012, ACL ’12 (
Association for Computational Linguistics
,
Kerrrville, TX
,
2012
), p. 5.
3.
A.
Blum
and
T.
Mitchell
, “Combining labeled and unlabeled data with co-training,” in Proceedings of the Eleventh Annual Conference on Computational Learning Theory, Madison, WI, 24-26 July 1998 (
Association of Computing Machinery
,
New York, NY
,
1998
), pp. 92–100.
4.
J.
Devlin
,
M.-W.
Chang
,
K.
Lee
, and
K.
Toutanova
, “BERT: Pre-training of deep bidirectional transformers for language understanding,” arXiv:1810.04805 (2018).
5.
H. A.
Pierson
and
M. S.
Gashler
,
Adv. Rob.
31
,
821
(
2017
).
6.
N.
Sünderhauf
et al.,
Int. J. Rob. Res.
37
,
405
(
2018
).
7.
L. E.
Peterson
,
Scholarpedia
4
,
1883
(
2009
).
8.
G. F.
Cooper
and
E.
Herskovits
,
Mach. Learn.
9
,
309
(
1992
).
9.
N.
Rochester
,
Transactions of the IRE Professional Group on Electronic Computers
EC-2
,
10
(
1953
).
10.
S.
Shalev-Shwartz
and
S.
Ben-David
,
Understanding Machine Learning: From Theory to Algorithms
(
Cambridge University
,
Cambridge
,
2014
).
11.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
,
Nature
521
,
436
(
2015
).
12.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT
,
Cambridge, MA
,
2016
).
13.
J.
Schmidhuber
,
Neural Networks
61
,
85
(
2015
).
14.
Y.
Bengio
et al.,
Found. Trends Mach. Learn.
2
,
1
(
2009
).
15.
N.
Seliya
,
T. M.
Khoshgoftaar
, and
J.
Van Hulse
, “A study on the relationships of classifier performance metrics,” in 2009 21st IEEE International Conference on Tools with Artificial Intelligence, Newark, NJ, 2-4 November 2009 (
IEEE Computer Society
,
Washington, DC
,
2009
), pp. 59–66.
16.
J. G.
Carbonell
,
R. S.
Michalski
, and
T. M.
Mitchell
, “
An overview of machine learning
,” in
Machine Learning: An Artificial Intelligence Approach
, edited by R. S. Michalski, J. G. Carbonell, and T. M. Mitchell (
Springer
,
Berlin/Heidelberg
,
1983
), pp. 3-23.
17.
C.
Rudin
,
Nat. Mach. Intell.
1
,
206
(
2019
).
18.
C.
Shorten
and
T. M.
Khoshgoftaar
,
J. Big Data
6
,
1
(
2019
).
19.
A. R. T.
Donders
,
G. J.
Van Der Heijden
,
T.
Stijnen
, and
K. G.
Moons
,
J. Clin. Epidemiol.
59
,
1087
(
2006
).
20.
K.
Weiss
,
T. M.
Khoshgoftaar
, and
D.
Wang
,
J. Big Data
3
,
1
(
2016
).
21.
O.
Sener
and
S.
Savarese
, “Active learning for convolutional neural networks: A core-set approach,” arXiv:1708.00489 (2017).
22.
J. L.
Schafer
and
J. W.
Graham
,
Psychol. Methods
7
,
147
(
2002
).
23.
S. I.
Nikolenko
,
Synthetic Data for Deep Learning
(
Springer
,
New York
,
2021
), Vol. 174.
24.
N. V.
Chawla
,
K. W.
Bowyer
,
L. O.
Hall
, and
W. P.
Kegelmeyer
,
J. Artif. Intell. Res.
16
,
321
(
2002
).
25.
C.
Elkan
, “The foundations of cost-sensitive learning,” in International Joint Conference on Artificial Intelligence (
Lawrence Erlbaum Associates Ltd
,
California City, CA
,
2001
), Vol. 17, pp. 973–978.
26.
T. G.
Dietterich
, “Ensemble methods in machine learning,” in Multiple Classifier Systems: First International Workshop, MCS 2000 Proceedings Cagliari, Italy, 21–23 June (Springer, New York, 2000), pp. 1–15.
27.
V.
Chandola
,
A.
Banerjee
, and
V.
Kumar
,
ACM Comput. Surv. (CSUR)
41
,
1
(
2009
).
28.
National Academies of Sciences, Engineering, and Medicine
,
Reproducibility and Replicability in Science
(
The National Academies
,
Washington, DC
,
2019
).
29.
C.
Wang
,
U.
Steiner
, and
A.
Sepe
,
Small
14
,
1802291
(
2018
).
30.
M.
Linford
,
V.
Jain
, and
G.
Major
, “Gross errors in XPS peak fitting,” in AVS66 Abstract Book (
AVS
,
New York, NY
, 2019), Vol. 72, see https://avs.org/AVS/files/e1/e1a0333e-4ffc-4a68-8f19-3e3b1dd9733d.pdf.
31.
M. R.
Linford
et al.,
Microsc. Microanal.
26
,
1
(
2020
).
32.
G. H.
Major
et al.,
Appl. Surf. Sci.
38
,
061203
(
2020
).
33.
G. H.
Major
,
B. M.
Clark
,
K.
Cayabyab
,
N.
Engel
,
C. D.
Easton
,
J.
Čechal
,
D. R.
Baer
,
J.
Terry
, and
M. R.
Linford
,
J. Vac. Sci. Technol. A
41
,
043201
(
2023
).
34.
R. D.
Chirico
et al.,
J. Chem. Eng. Data
58
,
2699
(
2013
).
35.
J.
Park
,
J. D.
Howe
, and
D. S.
Sholl
,
Chem. Mater.
29
,
10487
(
2017
).
36.
D. R.
Baer
and
I. S.
Gilmore
,
J. Vac. Sci. Technol. A
36
,
068502
(
2018
).
37.
G. H.
Major
et al.,
J. Vac. Sci. Technol. A
41
,
038501
(
2023
).
38.
F.
Oviedo
et al.,
npj Comput. Mater.
5
,
60
(
2019
).
39.
G. T.
Whiting
,
F.
Meirer
, and
B. M.
Weckhuysen
, “Operando EXAFS and XANES of catalytic solids and related materials,” in XAFS Techniques for Catalysts, Nanomaterials, and Surfaces (Springer International, New York, 2016), pp. 167–191.
40.
V.
Gupta
,
H.
Ganegoda
,
M. H.
Engelhard
,
J.
Terry
, and
M. R.
Linford
,
J. Chem. Educ.
91
,
232
(
2014
).
41.
P. M.
Sherwood
,
J. Vac. Sci. Technol. A
14
,
1424
(
1996
).
42.
N.
Fairley
,
CasaXPS
2
,
1999
(
2013
).
43.
See https://www.thermofisher.com/order/catalog/product/IQLAADGACKFAKRMAVI for “Avantage” (2023) (accessed 30 January 2023).
44.
D.
Adams
and
J.
Andersen
, see http://www.sljus.lu.se/download.html for “FitXPS version 2.12” (2010).
45.
RDATAA, “Aanalyzer: A peak fitting program for photoemission data,” https://www.rdataa.com/aanalyzer (2023).
46.
M.
Mohai
,
Surf. Interface Anal.
36
,
828
(
2004
).
47.
NIST X-ray Photoelectron Spectroscopy Database
, NIST Standard Reference Database Number 20 (National Institute of Standards and Technology, Gaithersburg, MD, 2000).
48.
J.
Rehr
and
A.
Ankudinov
,
Coord. Chem. Rev.
249
,
131
(
2005
).
49.
M.
Newville
,
Rev. Mineral. Geochem.
78
,
33
(
2014
).
50.
P.
Zimmermann
,
S.
Peredkov
,
P. M.
Abdala
,
S.
DeBeer
,
M.
Tromp
,
C.
Müller
, and
J. A.
van Bokhoven
,
Coord. Chem. Rev.
423
,
213466
(
2020
).
51.
G.
Aquilanti
,
M.
Giorgetti
,
R.
Dominko
,
L.
Stievano
,
I.
Arčon
,
N.
Novello
, and
L.
Olivi
,
J. Phys. D: Appl. Phys.
50
,
074001
(
2017
).
52.
W.-S.
Yoon
et al.,
Sci. Rep.
4
,
6827
(
2014
).
53.
M.
Li
,
D.
Olive
,
Y.
Trenikhina
,
H.
Ganegoda
,
J.
Terry
, and
S. A.
Maloy
,
J. Nucl. Mater.
441
,
674
(
2013
).
54.
R.
Prins
and
D.
Koningsberger
,
X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES
(
Wiley
,
New York
,
1988
).
55.
V.
Biebesheimer
,
E.
Marques
,
D.
Sandstrom
,
F.
Lytle
, and
R.
Greegor
,
J. Chem. Phys.
81
,
2599
(
1984
).
56.
M.
Newville
,
J. Synchrotron Radiat.
8
,
322
(
2001
).
57.
A.
Filipponi
and
A.
Di Cicco
,
TASK Q.
4
,
575
(
2000
).
58.
R.
Joyner
,
K.
Martin
, and
P.
Meehan
,
J. Phys. C Solid State
20
,
4005
(
1987
).
59.
M.
Feiters
,
R.
Strange
, and
N.
Binsted
,
International Tables for Crystallography
(
Wiley, Hoboken, NJ
,
2020
), Vol. 1, pp. 1-8.
60.
M.
Alain
,
M.
Jacques
,
M.-B.
Diane
, and
P.
Karine
,
J. Phys. Conf. Ser.
190
,
012034
(
2009
).
61.
B.
Ravel
, “Quantitative EXAFS analysis,” in X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications (Wiley, New York, 2016), Vol. 281.
62.
S.
Roweis
, Levenberg-Marquardt Optimization (
University of Toronto
,
Toronto
,
1996
), Vol. 52.
63.
B.
Ravel
and
M.
Newville
,
J. Synchrotron Radiat.
12
,
537
(
2005
).
64.
T.
Ressler
,
J. Phys. IV
7
,
C2
(
1997
).
65.
M.
Newville
,
J. Phys. Conf. Ser.
430
,
012007
(
2013
).
66.
D.
Urch
,
Q. Rev., Chem. Soc.
25
,
343
(
1971
).
67.
K. O.
Kvashnina
and
A. C.
Scheinost
,
J. Synchrotron Radiat.
23
,
836
(
2016
).
68.
M.
Neelakantan
,
S.
Marriappan
,
J.
Dharmaraja
,
T.
Jeyakumar
, and
K.
Muthukumaran
,
Spectrochim. Acta, Part A
71
,
628
(
2008
).
69.
K.
Thamaphat
,
P.
Limsuwan
, and
B.
Ngotawornchai
,
Agric. Nat. Resour.
42
,
357
(
2008
).
70.
P.
Bonneau
,
P.
Garnier
,
E.
Husson
, and
A.
Morell
,
Mater. Res. Bull.
24
,
201
(
1989
).
71.
D.
Hummer
,
P. J.
Heaney
, and
J.
Post
,
Powder Diffr.
22
,
352
(
2007
).
72.
G.
Poralan
,
J.
Gambe
,
E.
Alcantara
, and
R.
Vequizo
,
IOP Conf. Ser.: Mater. Sci. Eng.
79
, 012028 (
2015
).
73.
A.
Chauhan
and
P.
Chauhan
,
J. Anal. Bioanal. Tech.
5
,
1
(
2014
).
74.
J.
Rodríguez-Carvajal
,
An Introduction to the Program FullProf
(
Laboratoire Leon Brillouin (CEA-CNRS)
,
Paris, France
,
2001
).
75.
T.
Degen
and
J.
van den Oever
,
Powder Diffr.
24
,
163
(
2009
).
76.
A. A.
Coelho
,
J. Appl. Crystallogr.
51
,
210
(
2018
).
77.
B. H.
Toby
and
R. B.
Von Dreele
,
J. Appl. Crystallogr.
46
,
544
(
2013
).
78.
79.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
80.
X.
Li
and
B.
Bhushan
,
Mater. Charact.
48
,
11
(
2002
).
81.
A.
Gouldstone
,
H.-J.
Koh
,
K.-Y.
Zeng
,
A.
Giannakopoulos
, and
S.
Suresh
,
Acta Mater.
48
,
2277
(
2000
).
82.
S.
Bull
,
J. Phys. D: Appl. Phys.
38
,
R393
(
2005
).
83.
S.-H.
Lee
,
S.
Wang
,
G. M.
Pharr
, and
H.
Xu
,
Composites, Part A
38
,
1517
(
2007
).
84.
G.
Pharr
and
W.
Oliver
,
MRS Bull.
17
,
28
(
1992
).
85.
K. D.
Vernon-Parry
,
III-Vs Rev.
13
,
40
(
2000
).
86.
D.
Joy
and
D.
Newbury
,
AIP Conf. Proc.
449
,
653
(
1998
).
87.
V.
Randle
, “Texture,” in Encyclopedia of Materials: Science and Technology (Elsevier, New York, 2001), pp. 9119–9129.
88.
D. E.
Laughlin
and
K.
Hono
,
Physical Metallurgy
(
Newnes
,
New York, NY
,
2014
).
89.
S.
Zaefferer
,
Ultramicroscopy
107
,
254
(
2007
).
90.
D. E.
Newbury
and
N. W.
Ritchie
,
Microsc. Microanal.
25
,
1075
(
2019
).
91.
M. D.
Abràmoff
,
P. J.
Magalhães
, and
S. J.
Ram
,
Biophotonics Int.
11
,
36
(
2004
).
92.
D. R.
Mitchell
,
Microsc. Res. Tech.
71
,
588
(
2008
).
94.
See https://www.zeiss.com/microscopy/en/products/software/zeiss-zen.html for “Zeiss Zen” (2023) (accessed 30 January 2023).
95.
T. B.
Britton
,
V. S.
Tong
,
J.
Hickey
,
A.
Foden
, and
A. J.
Wilkinson
,
J. Appl. Crystallogr.
51
,
1525
(
2018
).
96.
J.
Li
,
T.
Malis
, and
S.
Dionne
,
Mater. Charact.
57
,
64
(
2006
).
97.
J.
Yu
,
J.
Liu
,
J.
Zhang
, and
J.
Wu
,
Mater. Lett.
60
,
206
(
2006
).
98.
C.
Kübel
,
A.
Voigt
,
R.
Schoenmakers
,
M.
Otten
,
D.
Su
,
T.-C.
Lee
,
A.
Carlsson
, and
J.
Bradley
,
Microsc. Microanal.
11
,
378
(
2005
).
99.
J.
Lian
,
L.
Wang
,
K.
Sun
, and
R. C.
Ewing
,
Microsc. Res. Tech.
72
,
165
(
2009
).
100.
D.
Kim
,
J. S.
Lee
,
C. M.
Barry
, and
J. L.
Mead
,
Microsc. Res. Tech.
70
,
539
(
2007
).
101.
A.
Cossins
,
Temperature Biology of Animals
(
Springer Science & Business Media
,
New York
,
2012
).
102.
R.
Egerton
,
P.
Li
, and
M.
Malac
,
Micron
35
,
399
(
2004
).
103.
M.
Dehmas
,
J.
Lacaze
,
A.
Niang
, and
B.
Viguier
,
Adv. Mater. Sci. Eng.
2011
,
940634
(
2011
).
104.
R.
Neumann
, “Materials research with energetic heavy ions at GSI,” in Physics and Engineering of New Materials (Springer, New York, 2009), pp. 311–319.
105.
R.
Schwarzer
,
Textures Microstruct.
20
,
696572
(
1993
).
106.
C.
Karthik
,
J.
Kane
,
D. P.
Butt
,
W.
Windes
, and
R.
Ubic
,
J. Nucl. Mater.
412
,
321
(
2011
).
107.
J.
Eapen
,
R.
Krishna
,
T. D.
Burchell
, and
K.
Murty
,
Mater. Res. Lett.
2
,
43
(
2014
).
108.
M.
Schorb
,
I.
Haberbosch
,
W. J.
Hagen
,
Y.
Schwab
, and
D. N.
Mastronarde
,
Nat. Methods
16
,
471
(
2019
).
109.
I.-P.
Plus
, “Image processing software,” https://imagej.net/ (1994).
110.
B.
Schaffer
Digital micrograph
,” in
Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry
, edited by C. B. Carter and D. B. Williams (
Springer, Cham
,
2016
), pp. 167-196.
111.
G.
Tang
,
L.
Peng
,
P. R.
Baldwin
,
D. S.
Mann
,
W.
Jiang
,
I.
Rees
, and
S. J.
Ludtke
,
J. Struct. Biol.
157
,
38
(
2007
).
112.
J. R.
Kremer
,
D. N.
Mastronarde
, and
J. R.
McIntosh
,
J. Struct. Biol.
116
,
71
(
1996
).
113.
A.
Hexemer
et al.,
J. Phys. Conf. Ser.
247
,
012007
(
2010
).
114.
A.
Mahmood
and
J.-L.
Wang
,
Sol. RRL
4
,
2000337
(
2020
).
115.
P.
Müller-Buschbaum
, “
Structure determination in thin film geometry using grazing incidence small-angle scattering
,” in
Polymer Surfaces and Interfaces: Characterization, Modification and Applications
(
Springer
,
Berlin/Heidelberg
,
2008
), pp. 17-46.
116.
J.
Perlich
et al.,
Rev. Sci. Instrum.
81
,
105105
(
2010
).
117.
P.
Müller-Buschbaum
,
Eur. Polym. J.
81
,
470
(
2016
).
118.
F.
Pietra
,
F. T.
Rabouw
,
W. H.
Evers
,
D. V.
Byelov
,
A. V.
Petukhov
,
C.
de Mello Donegá
, and
D.
Vanmaekelbergh
,
Nano Lett.
12
,
5515
(
2012
).
119.
W.
Wang
et al.,
J. Mater. Chem. A
3
,
8324
(
2015
).
120.
D.
Smilgies
,
P.
Busch
,
C. M.
Papadakis
, and
D.
Posselt
,
Synchrotron Radiat. News
15
,
35
(
2002
).
121.
A.
Hexemer
and
P.
Müller-Buschbaum
,
IUCrJ
2
,
106
(
2015
).
122.
S.
Vajda
,
R. E.
Winans
,
J. W.
Elam
,
B.
Lee
,
M. J.
Pellin
,
S.
Seifert
,
G. Y.
Tikhonov
, and
N. A.
Tomczyk
,
Top. Catal.
39
,
161
(
2006
).
123.
E.
Metwalli
et al.,
Langmuir
29
,
6331
(
2013
).
124.
G.
Pospelov
,
W.
Van Herck
,
J.
Burle
,
J. M.
Carmona Loaiza
,
C.
Durniak
,
J. M.
Fisher
,
M.
Ganeva
,
D.
Yurov
, and
J.
Wuttke
,
J. Appl. Crystallogr.
53
,
262
(
2020
).
125.
Z.
Jiang
,
J. Appl. Crystallogr.
48
,
917
(
2015
).
126.
A.
Hammersley
, “FIT2D: An introduction and overview,” Internal Report ESRF97HA02T (
European Synchrotron Radiation Facility, Grenoble
,
France
, 1997), Vol. 68, p. 58.
127.
I.
Breßler
,
B. R.
Pauw
, and
A. F.
Thünemann
,
J. Appl. Crystallogr.
48
,
962
(
2015
).
128.
G.
Ashiotis
,
A.
Deschildre
,
Z.
Nawaz
,
J. P.
Wright
,
D.
Karkoulis
,
F. E.
Picca
, and
J.
Kieffer
,
J. Appl. Crystallogr.
48
,
510
(
2015
).
129.
T. A.
White
,
R. A.
Kirian
,
A. V.
Martin
,
A.
Aquila
,
K.
Nass
,
A.
Barty
, and
H. N.
Chapman
,
J. Appl. Crystallogr.
45
,
335
(
2012
).
130.
S. W.
Lovesey
,
Theory of Neutron Scattering from Condensed Matter. Vol. 1. Nuclear Scattering
(
Oxford University
,
New York
,
1986
), p.
270
.
131.
S. W.
Lovesey
,
Theory of Neutron Scattering from Condensed Matter
(
Clarendon
,
Oxford, UK
,
1986
), Vol. 2, p.
310
.
132.
D.
Price
and
K.
Skold
,
Neutron Scattering
(
Academic
,
New York
,
1987
).
133.
J. L.
Rowsell
,
J.
Eckert
, and
O. M.
Yaghi
,
J. Am. Chem. Soc.
127
,
14904
(
2005
).
134.
J.
Higgins
,
H.
Benoit
, and
H.
Benô
, Polymers and Neutron Scattering, Oxford Science Publications (
Clarendon, Oxford
,
UK
, 1996), p. 436.
135.
A. J.
Allen
,
J. Am. Ceram. Soc.
88
,
1367
(
2005
).
136.
B.
Jacrot
,
Rep. Prog. Phys.
39
,
911
(
1976
).
137.
K. T.
Butler
,
D. W.
Davies
,
H.
Cartwright
,
O.
Isayev
, and
A.
Walsh
,
Nature
559
,
547
(
2018
).
138.
D.
Golze
,
M.
Hirvensalo
,
P.
Hernández-León
,
A.
Aarva
,
J.
Etula
,
T.
Susi
,
P.
Rinke
,
T.
Laurila
, and
M. A.
Caro
,
Chem. Mater.
34
,
6240
(
2022
).
139.
G.
Drera
,
C. M.
Kropf
, and
L.
Sangaletti
,
Mach. Learn.: Sci. Technol.
1
,
015008
(
2020
).
140.
A.
Aarva
,
V. L.
Deringer
,
S.
Sainio
,
T.
Laurila
, and
M. A.
Caro
,
Chem. Mater.
31
,
9243
(
2019
).
141.
A.
Aarva
,
V. L.
Deringer
,
S.
Sainio
,
T.
Laurila
, and
M. A.
Caro
,
Chem. Mater.
31
,
9256
(
2019
).
142.
R.
Xu
and
D.
Wunsch
,
IEEE Trans. Neural Networks
16
,
645
(
2005
).
143.
S.-H.
Park
,
H.
Park
,
H.
Lee
, and
H.-S.
Kim
,
J. Korean Phys. Soc.
79
,
1199
(
2021
).
144.
S.
Chatterjee
,
B.
Singh
,
A.
Diwan
,
Z. R.
Lee
,
M. H.
Engelhard
,
J.
Terry
,
H. D.
Tolley
,
N. B.
Gallagher
, and
M. R.
Linford
,
Appl. Surf. Sci.
433
,
994
(
2018
).
145.
D.
Coster
and
R. D. L.
Kronig
,
Physica
2
,
13
(
1935
).
146.
B. K.
Teo
,
EXAFS: Basic Principles and Data Analysis
(
Springer Science & Business Media
,
New York
,
2012
), Vol. 9.
147.
M.
Newville
,
J. Synchrotron. Radiat.
8
,
96
(
2001
).
148.
K.
Asakura
,
H.
Abe
, and
M.
Kimura
,
J. Synchrotron. Radiat.
25
,
967
(
2018
).
149.
J.
Terry
et al.,
Appl. Surf. Sci.
547
,
149059
(
2021
).
150.
J.
Timoshenko
,
H. S.
Jeon
,
I.
Sinev
,
F. T.
Haase
,
A.
Herzog
, and
B. R.
Cuenya
,
Chem. Sci.
11
,
3727
(
2020
).
151.
A.
Martini
et al.,
J. Phys. Chem. A
125
,
7080
(
2021
).
152.
D.
Kido
,
T.
Wada
, and
K.
Asakura
,
e-J. Surf. Sci. Nanotechnol.
21
,
231
(
2023
).
153.
C. D.
Rankine
,
M. M.
Madkhali
, and
T. J.
Penfold
,
J. Phys. Chem. A
124
,
4263
(
2020
).
154.
A.
Jain
et al.,
APL Mater.
1
,
011002
(
2013
).
155.
Y.
Liu
et al.,
J. Chem. Phys.
151
,
164201
(
2019
).
156.
T.
Mizoguchi
and
S.
Kiyohara
,
Microscopy
69
,
92
(
2020
).
157.
S. B.
Torrisi
,
M. R.
Carbone
,
B. A.
Rohr
,
J. H.
Montoya
,
Y.
Ha
,
J.
Yano
,
S. K.
Suram
, and
L.
Hung
,
npj Comput. Mater.
6
,
109
(
2020
).
158.
S.
Kirklin
,
J. E.
Saal
,
B.
Meredig
,
A.
Thompson
,
J. W.
Doak
,
M.
Aykol
,
S.
Rühl
, and
C.
Wolverton
,
npj. Comput. Mater.
1
,
1
(
2015
).
159.
S.
Kiyohara
and
T.
Mizoguchi
,
J. Phys. Soc. Jpn.
89
,
103001
(
2020
).
160.
L. U.
Khan
,
Z. U.
Khan
,
L.
Blois
,
L.
Tabassam
,
H. F.
Brito
, and
S. J.
Figueroa
,
Inorg. Chem.
62
,
2738
(
2023
).
161.
A.
Martini
et al.,
Comput. Phys. Commun.
250
,
107064
(
2020
).
162.
G.
Smolentsev
and
A. V.
Soldatov
,
Comput. Mater. Sci.
39
,
569
(
2007
).
163.
A. A.
Guda
et al.,
npj Comput. Mater.
7
,
203
(
2021
).
164.
O.
Trejo
et al.,
Chem. Mater.
31
,
8937
(
2019
).
165.
S.
Tetef
,
N.
Govind
, and
G. T.
Seidler
,
Phys. Chem. Chem. Phys.
23
,
23586
(
2021
).
166.
T.
Penfold
and
C.
Rankine
,
Mol. Phys.
121
,
e2123406
(
2023
).
167.
C. D.
Rankine
and
T.
Penfold
,
J. Chem. Phys.
156
,
164102
(
2022
).
168.
I.-H.
Hwang
,
S. D.
Kelly
,
M. K. Y.
Chan
,
E.
Stavitski
,
S. M.
Heald
,
S.-W.
Han
,
N.
Schwarz
, and
C.-J.
Sun
,
J. Synchrotron Radiat.
30
,
923
(
2023
).
169.
E.
Stavitski
and
F. M.
De Groot
,
Micron
41
,
687
(
2010
).
170.
B. B.
He
,
Two-Dimensional X-Ray Diffraction
(
Wiley
,
New York
,
2018
).
171.
I. C.
Madsen
,
N. V.
Scarlett
, and
N. A.
Webster
, “Quantitative phase analysis,” in Uniting Electron Crystallography and Powder Diffraction (Springer, New York, 2012), pp. 207–218.
172.
Y.
Suzuki
,
H.
Hino
,
Y.
Takeichi
,
T.
Hawai
,
M.
Kotsugi
, and
K.
Ono
,
Microsc. Microanal.
24
,
142
(
2018
).
173.
Y.
Suzuki
,
H.
Hino
,
T.
Hawai
,
K.
Saito
,
M.
Kotsugi
, and
K.
Ono
,
Sci. Rep.
10
,
21790
(
2020
).
174.
Y.
Iwasaki
,
M.
Ishida
, and
M.
Shirane
,
Sci. Technol. Adv. Mater.
21
,
25
(
2020
).
175.
G.
Sivaraman
,
G.
Csanyi
,
A.
Vazquez-Mayagoitia
,
I. T.
Foster
,
S. K.
Wilke
,
R.
Weber
, and
C. J.
Benmore
,
J. Phys. Soc. Jpn.
91
,
091009
(
2022
).
176.
B. D.
Lee
,
J.-W.
Lee
,
W. B.
Park
,
J.
Park
,
M.-Y.
Cho
,
S.
Pal Singh
,
M.
Pyo
, and
K.-S.
Sohn
,
Adv. Intell. Syst.
4
,
2200042
(
2022
).
177.
J.
Venderley
et al.,
Proc. Natl. Acad. Sci.
119
,
e2109665119
(
2022
).
178.
G.
Konstantopoulos
,
E. P.
Koumoulos
, and
C. A.
Charitidis
,
Mater. Des.
192
,
108705
(
2020
).
179.
A.
Ahmad
and
L.
Dey
,
Data Knowl. Eng.
63
,
503
(
2007
).
180.
S.
Kossman
and
M.
Bigerelle
,
Materials
14
,
7027
(
2021
).
181.
A.
Burleigh
et al.,
Appl. Surf. Sci.
612
,
155734
(
2023
).
182.
K.
de Haan
,
Z. S.
Ballard
,
Y.
Rivenson
,
Y.
Wu
, and
A.
Ozcan
,
Sci. Rep.
9
,
12050
(
2019
).
183.
M.
Ge
,
F.
Su
,
Z.
Zhao
, and
D.
Su
,
Mater. Today Nano
11
,
100087
(
2020
).
184.
K.
Kaufmann
,
C.
Zhu
,
A. S.
Rosengarten
,
D.
Maryanovsky
,
H.
Wang
, and
K. S.
Vecchio
,
Microsc. Microanal.
26
,
458
(
2020
).
185.
F.
Chollet
, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, 21-26 July 2017 (
IEEE Computer Society, Los Alamitos, CA
,
2017
), pp. 1251–1258.
186.
D. P.
Kingma
and
J.
Ba
, “Adam: A method for stochastic optimization,” arXiv:1412.6980 (2014).
187.
K.
Shiratori
,
L. D. C.
Bishop
,
B.
Ostovar
,
R.
Baiyasi
,
Y.-Y.
Cai
,
P. J.
Rossky
,
C. F.
Landes
, and
S.
Link
,
J. Mater. Chem. C
125
,
19353
(
2021
).
188.
H.
Wen
,
J. M.
Luna-Romera
,
J. C.
Riquelme
,
C.
Dwyer
, and
S. L.
Chang
,
Nanomaterials
11
,
2706
(
2021
).
189.
W.
Rong
,
Z.
Li
,
W.
Zhang
, and
L.
Sun
, “An improved canny edge detection algorithm,” in 2014 IEEE International Conference on Mechatronics and Automation (IEEE, New York, 2014), pp. 577–582.
190.
F.
Murtagh
and
P.
Legendre
,
J. Classif.
31
,
274
(
2014
).
191.
O.
Arbelaitz
,
I.
Gurrutxaga
,
J.
Muguerza
,
J. M.
Pérez
, and
I.
Perona
,
Pattern Recognit.
46
,
243
(
2013
).
192.
M.
Klinger
and
A.
Jäger
,
J. Appl. Crystallogr.
48
,
2012
(
2015
).
193.
M.
Klinger
, Crystbox—Crystallographic Toolbox (Institute of Physics of the Czech Academy of Sciences, Prague, 2015).
194.
D. G.
Lowe
,
Int. J. Comput. Vision
60
,
91
(
2004
).
195.
M. A.
Fischler
and
R. C.
Bolles
,
Commun. ACM
24
,
381
(
1981
).
196.
I.
Morenko
and
G.
Ostaeva
,
AIP Conf. Proc.
2467
,
20040
(
2022
).
197.
A. S.
Kornilov
and
I. V.
Safonov
,
J. Imaging
4
,
123
(
2018
).
198.
S.
Nebaba
,
D.
Zavyalov
, and
A.
Pak
, “Patterns detection in SAED images of transmission electron microscopy,” in CEUR Workshop Proceedings, Moscow Region, Russia, 9-13 November 2020 (
CEUR-WS, Aachen
,
Germany
, 2020), Vol. 2763, pp. 319–322.
199.
A.
Hinderhofer
,
A.
Greco
,
V.
Starostin
,
V.
Munteanu
,
L.
Pithan
,
A.
Gerlach
, and
F.
Schreiber
,
J. Appl. Crystallogr.
56
,
3
(
2023
).
200.
J. M. C.
Loaiza
and
Z.
Raza
,
Mach. Learn.: Sci. Technol.
2
,
025034
(
2021
).
201.
W.
Van Herck
,
J.
Fisher
, and
M.
Ganeva
,
Mater. Res. Express
8
,
045015
(
2021
).
202.
G.
Huang
,
Z.
Liu
,
L.
Van Der Maaten
, and
K. Q.
Weinberger
, “Densely connected convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, 21-26 July 2017 (
IEEE, Los Alamitos, CA
, 2017), pp. 4700–4708.
203.
J. M.
Joyce
, “Kullback-Leibler divergence,” in International Encyclopedia of Statistical Science (Springer, New York, 2011), pp. 720–722.
204.
R. K.
Archibald
,
M.
Doucet
,
T.
Johnston
,
S. R.
Young
,
E.
Yang
, and
W. T.
Heller
,
J. Appl. Crystallogr.
53
,
326
(
2020
).
205.
M.
Doucet
et al. (
2019
). “,”
Zenodo
. https://doi.org/10.5281/zenodo.4467702.
206.
C.
Garcia-Cardona
,
R.
Kannan
,
T.
Johnston
,
T.
Proffen
,
K.
Page
, and
S. K.
Seal
, “Learning to predict material structure from neutron scattering data,” in 2019 IEEE International Conference on Big Data (Big Data) (IEEE, New York, 2019), pp. 4490–4497.
207.
T.
Kanazawa
,
A.
Asahara
, and
H.
Morita
,
J. Phys.: Mater.
3
,
015001
(
2019
).
208.
A.
Samarakoon
,
D. A.
Tennant
,
F.
Ye
,
Q.
Zhang
, and
S. A.
Grigera
,
Commun. Mater.
3
,
84
(
2022
).
You do not currently have access to this content.