We present the results of an interlaboratory study on work function (WF) measurements by ultraviolet photoelectron spectroscopy (UPS) conducted under the auspices of the Versailles Project on Advanced Materials and Standards. Two samples, gold (Au) film deposited on a flat Si(100) and highly oriented pyrolytic graphite (HOPG), were distributed to six different laboratories. Prior to UPS measurements, the samples underwent common sample pre-cleaning procedures: wet treatment and Ar+-sputtering in a vacuum for Au, and mechanical peeling in air for HOPG. Instrumental settings are adjusted for energy-scale calibration and sample bias optimization. The average reference WF value (WFref) and its expanded uncertainty (Uref) were calculated from each dataset that participants provided. The results of the Au sample demonstrated 5.40 ± 0.13 eV after Ar+ sputtering in vacuum, while the HOPG sample showed 4.62 ± 0.16 eV after mechanical peeling-off. Even though the participants used slightly different sample bias voltages and sample cleaning methods with various instruments, the results demonstrate remarkable consistency. Their consistency among the laboratories for both samples with high and low WF values provides a basis for establishing a new international standard for UPS in the surface chemical analysis community.

1.
ISO 18115-1
,
Surface Chemical Analysis —Vocabulary—Part 1: General Terms and Terms Used in Spectroscopy
(
ISO
,
Geneva
,
2023
).
2.
D.
Cahen
and
A.
Kahn
,
Adv. Mater.
15
,
271
(
2003
).
3.
H.
Kawano
,
Prog. Surf. Sci.
83
,
1
(
2008
).
4.
J. W.
Kim
and
A.
Kim
,
Curr. Appl. Phys.
31
,
52
(
2021
).
5.
S.
Xinyin
,
D. J.
Frankel
,
J. C.
Hermanson
,
G. J.
Lapeyre
, and
R. J.
Smith
,
Phys. Rev. B
32
,
2120
(
1985
).
6.
P. N.
Ross
and
A. T.
D'Agostino
,
Electrochim. Acta
37
,
615
(
1992
).
7.
G. V.
Hansson
and
S. A.
Flodström
,
Phys. Rev. B
18
,
1572
(
1978
).
8.
B.
Jaeckel
,
J.
Sambur
, and
B. A.
Parkinson
,
J. Phys. Chem. C
113
,
1837
(
2009
).
9.
K.
Markert
,
P.
Dolle
,
J. W.
Niemantsverdriet
, and
K.
Wandelt
,
J. Vac. Sci. Technol. A
5
,
2849
(
1987
).
10.
P.
Borghetti
,
A.
El-Sayed
,
E.
Goiri
,
C.
Rogero
,
J.
Lobo-Checa
,
L.
Floreano
,
J. E.
Ortega
, and
D. G.
de Oteyza
,
ACS Nano
8
,
12786
(
2014
).
11.
H.
Kawano
,
Prog. Surf. Sci.
97
,
100583
(
2022
).
12.
M. G.
Helander
,
M. T.
Greiner
,
Z. B.
Wang
, and
Z. H.
Lu
,
Appl. Surf. Sci.
256
,
2602
(
2010
).
13.
T.
Schultz
et al,
Adv. Mater. Interfaces
4
,
1700324
(
2017
).
14.
W.
Li
and
D. Y.
Li
,
J. Chem. Phys.
122
,
064708
(
2005
).
15.
ISO 15472
,
Surface Chemical Analysis—X-ray Photoelectron Spectrometers—Calibration of Energy Scales
(
ISO
,
Geneva
,
2010
).
16.
ISO 24237
,
Surface Chemical Analysis—X-ray Photoelectron Spectroscopy—Repeatability and Constancy of Intensity Scale
(
ISO
,
Geneva
,
2005
).
17.
M.
Yoshitake
,
Work Function and Band Alignment of Electrode Materials
(
Springer
, Tokyo,
2021
).
18.
S.
Hüfner
,
Photoelectron Spectroscopy
(
Springer
,
Heidelberg
,
2003
).
19.
F.
Patthey
,
J.-M.
Imer
,
W.-D.
Schneider
,
H.
Beck
,
Y.
Baer
, and
B.
Delley
,
Phys. Rev. B
42
,
8864
(
1990
).
20.
J. E.
Whitten
,
Appl. Surf. Sci. Adv.
13
,
100384
(
2023
).
21.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
,
84th ed.
(
CRC
,
Boca Raton, FL
,
2008
).
22.
BIPM
,
CCQM Guidance Note: Estimation of a Consensus KCRV and Associated Degrees of Equivalence
(
Bureau International des Poids et Mesures
, Saint-Cloud,
2013
).
23.
H.
Vazquez
,
Y. J.
Dappe
,
J.
Ortega
, and
F.
Flores
,
J. Chem. Phys.
126
,
144703
(
2007
).
24.
P. A.
Fernandez Garrillo
,
B.
Grevin
,
N.
Chevalier
, and
L.
Borowik
,
Rev. Sci. Instrum.
89
,
043702
(
2018
).
25.
W. N.
Hansen
and
G. J.
Hansen
,
Surf. Sci.
481
,
172
(
2001
).
26.
A.
Liscio
,
V.
Palermo
,
K.
Müllen
, and
P.
Samorì
,
J. Phys. Chem. C
112
,
17368
(
2008
).
You do not currently have access to this content.