Molecular gas species for gas cluster ion beams (GCIBs), such as carbon dioxide and water, were examined with a range of beam energies and cluster sizes to compare with the “universal relation” of the sputter yield, Y, per cluster atom against incident beam energy, E, per cluster atom of Arn cluster beam using Irganox 1010. In this work, we compare Arn, (CO2)n, and (H2O)n gas clusters to the universal equations for Arn clusters. To discuss molecular gas species for GCIBs, energy per nucleon (E/N) needs to replace energy per atom. We monitored sputter rate, depth resolution, and secondary ion yield as a function of the beam parameters: gas species, beam energy, and cluster size. (H2O)n GCIB shows reduced sputter rates and improved depth resolution with high sensitivity compared to Arn and (CO2)n GCIBs. These initial results indicate the potential to achieve high-depth resolution with high sensitivity and suggest that (H2O)n cluster ion beam has the potential to play a significant role in surface analysis techniques with organic materials. Results also show that no single set of conditions will provide the “best gas cluster ion beam” for all applications. However, it is possible to choose a set of conditions that will be more or less optimal depending on the experimental goals, such as maximizing the sputter rate, depth resolution, and molecular ion yield. In this work, we recommend the following three guidelines for GCIB users to set their own conditions: (1) to maximize the sputter rate, select a smaller cluster (higher E/N), but be aware that this will increase fragmentation and reduce molecular ion yield; (2) to maximize the depth resolution, select a larger cluster (lower E/N), and use (H2O)n GCIB, if possible; and (3) to maximize the molecular ion signal, use the highest beam energy available, and select a cluster with 0.15–0.25 eV/nucleon for Ar and (CO2)n GCIBs or around 0.1 eV/nucleon if using (H2O)n GCIB. These results are valid for XPS, SIMS, and any technique that utilizes GCIBs.

1.
J. C.
Vickerman
and
N.
Winograd
,
Int. J. Mass Spectrom.
377
,
568
(
2015
).
2.
S.
Ninomiya
,
Y.
Nakata
,
Y.
Honda
,
K.
Ichiki
,
T.
Seki
,
T.
Aoki
, and
J.
Matsuo
,
Appl. Surf. Sci.
255
,
1588
(
2008
).
3.
S.
Ninomiya
,
K.
Ichiki
,
H.
Yamada
,
Y.
Nakata
,
T.
Seki
, and
T.
Aoki
,
Rapid Commun. Mass Spectrom.
23
,
1601
(
2009
).
4.
S.
Rabbani
,
A. M.
Barber
,
J. S.
Fletcher
,
N. P.
Lockyer
, and
J. C.
Vickerman
,
Anal. Chem.
83
,
3793
(
2011
).
5.
A. G.
Shard
et al,
J. Phys. Chem. B
119
,
10784
(
2015
).
6.
I. S.
Gilmore
,
S.
Heiles
, and
C. L.
Pieterse
,
Annu. Rev. Anal. Chem.
12
,
201
(
2019
).
8.
A.
Delcorte
,
K.
Moshkunov
, and
M.
Debongnie
,
J. Vac. Sci. Technol. B
36
,
03F109
(
2018
).
9.
S.
Ninomiya
,
Y.
Nakata
,
K.
Ichiki
,
T.
Seki
,
T.
Aoki
, and
J.
Matsuo
,
Nucl. Instrum. Methods Phys. Res. B
256
,
493
(
2007
).
10.
S.
Ninomiya
,
K.
Ichiki
,
Y.
Nakata
,
T.
Seki
,
T.
Aoki
, and
J.
Matsuo
,
J. Nucl. Instrum. Methods Phys. Res. B
256
,
528
(
2007
).
11.
R.
Hill
,
P.
Blenkinsopp
,
S.
Thompson
,
J.
Vickerman
, and
J. S.
Fletcher
,
Surf. Interface Anal.
43
,
506
(
2011
).
12.
S.
Sheraz née Rabbani
,
A.
Barber
,
J. S.
Fletcher
,
N. P.
Lockyer
, and
J. C.
Vickerman
,
Anal. Chem.
85
,
5654
(
2013
).
13.
I.
Yamada
,
J.
Matsuo
,
N.
Toyoda
, and
A.
Kirkpatrick
,
Mater. Sci. Eng. R
34
,
231
(
2001
).
14.
J.
Matsuo
,
C.
Okubo
,
T.
Seki
,
T.
Aoki
,
N.
Toyoda
, and
I.
Yamada
,
Nucl. Instrum. Methods Phys. Res. B
219–220
,
463
(
2004
).
15.
J. F.
Fletcher
and
C.
Szakal
, in
TOF-SIMS Surface Analysis by Mass Spectrometry
, edited by
J. C.
Vickerman
and
D.
Briggs
(
IM/SurfaceSpectra
,
Manchester
,
2013
).
16.
B. J.
Garrison
and
Z.
Postawa
, in
TOF-SIMS Surface Analysis by Mass Spectrometry
, edited by
J. C.
Vickerman
and
D.
Briggs
(
IM/SurfaceSpectra
,
Manchester
,
2013
).
17.
C.
Anders
and
H. N.
Urbassek
,
Nucl. Instrum. Methods Phys. Res. B
228
,
57
(
2005
).
18.
M. P.
Seah
,
J. Phys. Chem. C
117
,
12622
(
2013
).
19.
M. P.
Seah
,
S. J.
Spencer
,
R.
Havelund
,
I. S.
Gilmore
, and
A. G.
Shard
,
Analyst
140
,
6508
(
2015
).
20.
R. J.
Paruch
,
B. J.
Garrison
,
M.
Mlynek
, and
Z.
Postawa
,
J. Phys. Chem. Lett.
5
,
3227
(
2014
).
21.
R. J.
Paruch
,
Z.
Postawa
, and
B. J.
Garrison
,
J. Vac. Sci. Technol. B.
34
,
2166
(
2016
).
22.
P. J.
Cumpson
,
J. F.
Portoles
,
A. J.
Barrow
,
N.
Sano
, and
M.
Birch
,
Surf. Interface Anal.
45
,
1859
(
2013
).
23.
P. J.
Cumpson
,
M.
Jaskiewicz
, and
W. K.
Kim
,
Surf. Interface Anal.
54
,
341
(
2022
).
24.
H.
Tian
,
D.
Maciążek
,
Z.
Postawa
,
B. J.
Garrison
, and
N.
Winograd
,
J. Am. Soc. Mass Spectrom.
27
,
1476
(
2016
).
25.
A. M.
Alnajeebi
,
J. C.
Vickerman
, and
N. P.
Lockyer
,
Rapid Commun Mass Spectrom.
32
,
1962
(
2018
).
26.
S.
Sheraz
,
H.
Tian
,
J. C.
Vickerman
,
P.
Blenkinsopp
,
N.
Winograd
, and
P. J.
Cumpson
,
Anal. Chem.
91
,
9058
(
2019
).
27.
K.
Moritani
,
M.
Kanai
,
K.
Goto
,
I.
Ihara
,
N.
Inui
, and
K.
Mochiji
,
Nucl. Instrum. Methods. Phys. Res. B
315
,
300
(
2013
).
28.
M.
Lagator
,
I.
Berrueta Razo
,
T.
Royle
, and
N. P.
Locyker
,
Surf. Interface Anal.
54
,
349
(
2022
).
29.
H.
Tian
,
L. J.
Sparvero
,
P.
Blenkinsopp
,
A. A.
Amoscato
,
S. C.
Watkins
,
H.
Bayır
,
V. E.
Kagan
, and
N.
Winograd
,
Angew. Chem.
131
,
3188
(
2019
).
30.
S. J.
Lee
et al,
Appl. Surf. Sci.
572
,
151467
(
2022
).
31.
A.
Delcorte
and
M.
Debongnie
,
J. Phys. Chem. C
119
,
25868
(
2015
).
You do not currently have access to this content.