We report deposition of hematite/Pd thin films on silicon wafers via radio frequency (RF) magnetron sputtering and subsequent characterization for future in situ neutron reflectometry studies. Following deposition, the hematite/Pd thin films were characterized as prepared and after annealing in air for 2h at 400, 500, and 600 °C, respectively. Raman spectroscopy, grazing incidence x-ray diffraction, and neutron reflectometry (NR) were used to characterize the structure and chemical compositions of the thin films. The results indicate that pure α-Fe2O3 (hematite) films were produced, free from other iron oxide phases and impurities. NR data reveal that one intermediate layer between the Pd layer and the hematite layer was formed during sputtering deposition processes. The fitted scattering length density (SLD) of the as-deposited hematite layer is 70% of the theoretical SLD value, indicating that the grains are loosely packed in the RF-deposited hematite films. After annealing at elevated temperatures, the hematite films show increased SLD values but remain comparable to that of preannealed.

1.
F.
Qian
,
H.
Wang
,
Y.
Ling
,
G.
Wang
,
M. P.
Thelen
, and
Y.
Li
,
Nano Lett.
14
,
3688
(
2014
).
2.
3.
L. A.
Meitl
,
C. M.
Eggleston
,
P. J. S.
Colberg
,
N.
Khare
,
C. L.
Reardon
, and
L.
Shi
,
Geochim. Cosmochim. Acta
73
,
5292
(
2009
).
4.
Z.
Shi
,
J. M.
Zachara
,
Z.
Wang
,
L.
Shi
, and
J. K.
Fredrickson
,
Geochim. Cosmochim. Acta
121
,
139
(
2013
).
5.
Z.
Wang
,
Z.
Shi
,
L.
Shi
,
G. F.
White
,
D. J.
Richardson
,
T. A.
Clarke
,
J. K.
Fredrickson
, and
J. M.
Zachara
,
Geochim. Cosmochim. Acta
163
,
299
(
2015
).
6.
A.
Johs
,
L.
Shi
,
T.
Droubay
,
J. F.
Ankner
, and
L.
Liang
,
Biophys J.
98
,
3035
(
2010
).
7.
C. M.
Eggleston
,
N.
Khare
, and
D. M.
Lovelace
,
J. Electron Spectrosc. Relat. Phenom.
150
,
220
(
2006
).
8.
A. G.
Stack
,
K. M.
Rosso
,
D. M. A.
Smith
, and
C. M.
Eggleston
,
J. Colloid Interface Sci.
274
,
442
(
2004
).
9.
N.
Khare
,
D. M.
Lovelace
,
C. M.
Eggleston
,
M.
Swenson
, and
T. S.
Magnuson
,
Geochim. Cosmochim. Acta
70
,
4332
(
2006
).
10.
A. J.
Bard
,
L. R.
Faulkner
, and
H. S.
White
,
Electrochemical Methods Fundamentals and Applications
,
3rd ed.
(
Wiley
,
New York
,
2022
).
11.
D. A.
Wheeler
,
G.
Wang
,
Y.
Ling
,
Y.
Li
, and
J. Z.
Zhang
,
Energy Environ. Sci.
5
,
6682
(
2012
).
12.
Y.
Ling
and
Y.
Li
,
Part. Part. Syst. Charact.
31
,
1113
(
2014
).
13.
H.
Wang
,
A.
Johs
,
J. F.
Browning
,
D. A.
Tennant
, and
L.
Liang
,
Bioelectrochemistry
129
,
162
(
2019
).
14.
A.
Aleman
,
C.
Li
,
H.
Zaid
,
H.
Kindlund
,
J.
Fankhauser
,
S. V.
Prikhodko
,
M. S.
Goorsky
, and
S.
Kodambaka
,
J. Vac. Sci. Technol. A
36
,
030602
(
2018
).
15.
J. F.
Ankner
,
X.
Tao
,
C. E.
Halbert
,
J. F.
Browning
,
S.
Michael Kilbey
,
O. A.
Swader
,
M. S.
Dadmun
,
E.
Kharlampieva
, and
S. A.
Sukhishvili
,
Neutron News
19
,
14
(
2008
).
16.
A.
Nelson
,
J. Phys.: Conf. Ser.
251
,
012094
(
2010
).
17.
M.
Tran
,
A.
Whale
, and
S.
Padalkar
,
Sensors
18
,
147
(
2018
).
18.
W.-J.
Lee
and
Y.-H.
Chang
,
Coatings
8
,
431
(
2018
).
19.
A.
Wang
,
K. E.
Kuebler
,
B. L.
Jolliff
, and
L. A.
Haskin
,
Am. Mineral.
89
,
665
(
2004
).
20.
A. P.
Singh
,
C.
Tossi
,
I.
Tittonen
,
A.
Hellman
, and
B.
Wickman
,
RSC Adv.
10
,
33307
(
2020
).
21.
J. A.
Glasscock
,
P. R. F.
Barnes
,
I. C.
Plumb
,
A.
Bendavid
, and
P. J.
Martin
,
Thin Solid Films
516
,
1716
(
2008
).
22.
A. M.
Jubb
and
H. C.
Allen
,
ACS Appl. Mater. Interfaces
2
,
2804
(
2010
).
23.
C. P.
Marshall
,
W. J. B.
Dufresne
, and
C. J.
Rufledt
,
J. Raman Spectrosc.
51
,
1522
(
2020
).
24.
U. S.
Khan
,
Amanullah
,
A.
Manan
,
N.
Khan
,
A.
Mahmood
, and
A.
Rahim
,
Mater. Sci. Pol.
33
,
278
(
2015
).
25.
D.
Bersani
,
P. P.
Lottici
, and
A.
Montenero
,
J. Raman Spectrosc.
30
,
355
(
1999
).
26.
Z.
Zhao
,
J.
Elwood
, and
M. A.
Carpenter
,
J. Phys. Chem. C
119
,
23094
(
2015
).
27.
NIST Center for Neutron Research
, see https://www.ncnr.nist.gov/resources/n-lengths/ for “Neutron Scattering Lengths and Cross Sections” (last accessed May 18, 2022).
28.
N.
Verma
,
R.
Delhez
,
N. M.
van der Pers
,
F. D.
Tichelaar
, and
A. J.
Böttger
,
Int. J. Hydrogen Energy
46
,
4137
(
2021
).
29.
J. A.
Thornton
,
J. Vac. Sci. Technol.
11
,
666
(
1974
).
30.
R.
Sinha
,
R.
Lavrijsen
,
M. A.
Verheijen
,
E.
Zoethout
,
H.
Genuit
,
M. C. M.
van de Sanden
, and
A.
Bieberle-Hütter
,
ACS Omega
4
,
9262
(
2019
).
31.
M.
Kracker
,
W.
Wisniewski
, and
C.
Rüssel
,
RSC Adv.
4
,
48135
(
2014
).
32.
H. H.
Kan
and
J. F.
Weaver
,
Surf. Sci.
603
,
2671
(
2009
).
33.
See the supplementary material at online for Fig. S2 and Tables SII and SIII.

Supplementary Material

You do not currently have access to this content.