Ti(Si)N coatings were deposited on Si wafers via magnetron sputtering physical vapor deposition technique. Scanning electron microscopy and atomic force microscopy were used to study the morphologies, grain size, and thicknesses of the different films. X-ray diffraction confirmed the formation of the titanium nitride cubic phase. X-ray photoelectron spectroscopy (XPS) was used to study the silicon and oxygen levels in the films, and high resolution XPS was used to determine the surface oxide to nitride ratios as well as the silicon–nitrogen environment. The hardness of these films was then determined with nanoindentation. It was shown that grain size and film density could be controlled by the Si level and the ion bombardment to eliminate the oxygen level in the nitride coatings, which led to the harder films. It was suggested that due to the miscibility of Si, a ternary TiSiN solid solution was formed. Stronger (200) orientation of the TiN B1-NaCl crystals was associated with increased hardness of the coatings. This crystalline structure was preserved after incorporating Si.

1.
U. K.
Wiiala
,
I. M.
Penttinen
,
A. S.
Korhonen
,
J.
Aromaa
, and
E.
Ristolainen
,
Surf. Coat. Technol.
41
,
191
(
1990
).
2.
H.
Holleck
,
J. Vac. Sci. Technol. A
4
,
2661
(
1986
).
3.
4.
E.
Török
,
A. J.
Perry
,
L.
Chollet
, and
W. D.
Sproul
,
Thin Solid Films
153
,
37
(
1987
).
5.
Y.-Y.
Chang
,
H.
Chang
,
L.-J.
Jhao
, and
C.-C.
Chuang
,
Surf. Coatings Technol.
350
,
1071
(
2018
).
6.
R.
Akhter
,
Z.
Zhou
,
Z.
Xie
, and
P.
Munroe
,
Appl. Surf. Sci.
563
,
150356
(
2021
).
7.
R.
Akhter
,
Z.
Zhou
,
Z.
Xie
, and
P.
Munroe
,
Surf. Coat. Technol.
425
,
127687
(
2021
).
8.
M.
Athmani
,
A.
AL-Rjoub
,
D.
Cavaleiro
,
A.
Chala
,
A.
Cavaleiro
, and
F.
Fernandes
,
Surf. Coatings Technol.
405
,
126593
(
2021
).
9.
G.
Greczynski
,
B.
Bakhit
,
L.
Hultman
, and
M.
Odén
,
Surf. Coatings Technol.
398
,
126087
(
2020
).
11.
Y.
Zhang
,
Y.
Yang
,
H.
Ding
,
Y.
Peng
,
S.
Zhang
,
L.
Yu
, and
P.
Zhang
,
Vacuum
125
,
6
(
2016
).
12.
A. R.
Bushroa
,
R. G.
Rahbari
,
H. H.
Masjuki
, and
M. R.
Muhamad
,
Vacuum
86
,
1107
(
2012
).
13.
C.-L.
Chang
,
C.-T.
Lin
,
P.-C.
Tsai
,
W.-Y.
Ho
, and
D.-Y.
Wang
,
Thin Solid Films
516
,
5324
(
2008
).
14.
K.
Zhang
,
J.
Deng
,
X.
Guo
,
L.
Sun
, and
S.
Lei
,
Int. J. Refract. Met. Hard Mater.
72
,
292
(
2018
).
16.
R.
Ramadoss
,
N.
Kumar
,
R.
Pandian
,
S.
Dash
,
T. R.
Ravindran
,
D.
Arivuoli
, and
A. K.
Tyagi
,
Tribol. Int.
66
,
143
(
2013
).
17.
O.
Knotek
,
A.
Barimani
,
B.
Bosserhoff
, and
F.
Löffler
,
Thin Solid Films
193–194
,
557
(
1990
).
18.
J. C.
Oliveira
,
F.
Fernandes
,
F.
Ferreira
, and
A.
Cavaleiro
,
Surf. Coatings Technol.
264
,
140
(
2015
).
19.
S.
Veprek
,
R. F.
Zhang
,
M. G. J.
Veprek-Heijman
,
S. H.
Sheng
, and
A. S.
Argon
,
Surf. Coatings Technol.
204
,
1898
(
2010
).
20.
S.
Veprek
and
M. G. J.
Veprek-Heijman
,
Surf. Coatings Technol.
201
,
6064
(
2007
).
21.
S.
Logothetidis
,
E. I.
Meletis
,
G.
Stergioudis
, and
A. A.
Adjaottor
,
Thin Solid Films
338
,
304
(
1999
).
22.
H.-Y.
Chen
and
F.-H.
Lu
,
J. Vac. Sci. Technol. A
23
,
1006
(
2005
).
23.
H.
Li
,
Y.
Liu
,
B.
Jiang
,
J.
Kan
, and
Z.
Liu
,
Vacuum
125
,
165
(
2016
).
24.
K.
Bobzin
,
C.
Kalscheuer
,
M.
Carlet
, and
C.
Schulze
,
Thin Solid Films
755
,
139331
(
2022
).
25.
C.-L.
Chang
and
C.-W.
Wu
,
Thin Solid Films
517
,
5219
(
2009
).
26.
D.
Cavaleiro
,
A.
Cavaleiro
,
S.
Carvalho
, and
F.
Fernandes
,
Thin Solid Films
688
,
137423
(
2019
).
27.
Y.-W.
Lin
,
H.-A.
Chen
,
G.-P.
Yu
, and
J.-H.
Huang
,
Thin Solid Films
618
,
13
(
2016
).
28.
Doğus
Özkan
et al,
Ceram. Int.
47
,
20077
(
2021
).
29.
Z.
Gao
,
J.
Kulczyk-Malecka
,
E.
Bousser
,
X.
Zhang
,
Y.
Chen
,
H.
Liu
,
P.
Kelly
, and
P.
Xiao
,
Thin Solid Films
688
,
137439
(
2019
).
30.
J. A.
Montes De Oca Valero
,
Y.
Le Petitcorps
,
J. P.
Manaud
,
G.
Chollon
,
F. J.
Carrillo Romo
, and
A. M.
Lopez
,
J. Vac. Sci. Technol. A
23
,
394
(
2005
).
31.
Q.
Xie
,
Z.
Fu
,
Z.
Liu
,
W.
Yue
,
J.
Kang
,
L.
Zhu
,
C.
Wang
, and
S.
Lin
,
Thin Solid Films
749
,
139181
(
2022
).
32.
Y.
Gao
,
S.
Sun
,
Y.
Li
, and
V.
Selvamanickam
,
Thin Solid Films
734
,
138848
(
2021
).
33.
G.
Zorn
,
R.
Adadi
,
R.
Brener
,
V. A.
Yakovlev
,
I.
Gotman
,
E. Y.
Gutmanas
, and
C. N.
Sukenik
,
Chem. Mater.
20
,
5368
(
2008
).
34.
G.
Zorn
,
V.
Migonney
, and
D. G.
Castner
,
Biointerphases
9
,
031001
(
2014
).
35.
A. C.
Agudelo
,
J. R.
Gancedo
,
J. F.
Marco
, and
D.
Hanžel
,
J. Vac. Sci. Technol. A
15
,
3163
(
1997
).
36.
Y. H.
Cheng
,
T.
Browne
, and
B.
Heckerman
,
J. Vac. Sci. Technol. A
27
,
82
(
2009
).
37.
F.-J.
Haug
,
P.
Schwaller
,
J.
Wloka
,
J.
Patscheider
,
A.
Karimi
, and
M.
Tobler
,
J. Vac. Sci. Technol. A
22
,
1229
(
2004
).
38.
J.
Restrepo
,
G.
Mondragon-Rodriguez
,
J. M.
Gonzalez-Carmona
,
J. M.
Alvarado-Orozco
,
O.
Garcia-Zarco
, and
S. E.
Rodil
,
J. Mater. Eng. Perform.
31
,
1857
(
2022
).
39.
C.
Dang
,
Y.
Yao
,
T.
Olugbade
,
J.
Li
, and
L.
Wang
,
Thin Solid Films
653
,
107
(
2018
).
40.
M. V.
Kuznetsov
,
E. V.
Shalaeva
,
S. V.
Borisov
,
B. V.
Mitrofanov
, and
A. L.
Ivanovsky
,
Thin Solid Films
279
,
75
(
1996
).
41.
E. V.
Shalaeva
,
S. V.
Borisov
,
O. F.
Denisov
, and
M. V.
Kuznetsov
,
Thin Solid Films
339
,
129
(
1999
).
42.
D.
Geng
,
R.
Zeng
,
Z.
Wu
, and
Q.
Wang
,
Thin Solid Films
709
,
138243
(
2020
).
43.
S.
Veprek
,
M. G. J.
Veprek-Heijman
,
P.
Karvankova
, and
J.
Prochazka
,
Thin Solid Films
476
,
1
(
2005
).
44.
M. A. P.
Yazdi
,
F.
Lomello
,
J.
Wang
,
F.
Sanchette
,
Z.
Dong
,
T.
White
,
Y.
Wouters
,
F.
Schuster
, and
A.
Billard
,
Vacuum
109
,
43
(
2014
).
You do not currently have access to this content.