In this work, we present the floating field plate (FFP) that a novel structure modulates the electric field in beta gallium oxide (β-Ga2O3) power devices and integrated circuit modules. By reducing the peak electric field during reverse high-voltage operation, the FFP improves the device's performance while maintaining its forward characteristics. Compared with the traditional field plate structure, the FFP increases the power figure of merit by 34.9% with the same device parameters and reduces the dielectric material requirement by 52% as the same device blocking voltage. We also establish a relationship between different dielectric materials (SiO2, Al2O3, Si3N4, etc.) and the optimal structure size through simulation. More importantly, the FFP can be applied to β-Ga2O3 power modules and optimize the electric field distribution regionally, thereby improving the system’s robustness. This study provides a new solution for enhancing the performance of β-Ga2O3 devices and advancing β-Ga2O3 power modules.

1.
M.
Higashiwaki
and
G. H.
Jessen
,
Appl. Phys. Lett.
112
,
060401
(
2018
).
2.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
3.
A. J.
Green
et al,
APL Mater.
10
,
029201
(
2022
).
4.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
,
Jpn. J. Appl. Phys.
55
,
1202A2
(
2016
).
5.
W.
Mu
,
Z.
Jia
,
Y.
Yin
,
Q.
Hu
,
Y.
Li
,
B.
Wu
,
J.
Zhang
, and
X.
Tao
,
J. Alloys Compd.
714
,
453
(
2017
).
6.
J. D.
Blevins
,
K.
Stevens
,
A.
Lindsey
,
G.
Foundos
, and
L.
Sande
,
IEEE Trans. Semicond. Manuf.
32
,
466
(
2019
).
7.
Z.
Feng
,
A. F. M.
Anhar Uddin Bhuiyan
,
M. R.
Karim
, and
H.
Zhao
,
Appl. Phys. Lett.
114
,
250601
(
2019
).
8.
W.
Tang
et al,
Appl. Phys. Lett.
120
,
212103
(
2022
).
9.
K.
Goto
,
K.
Konishi
,
H.
Murakami
,
Y.
Kumagai
,
B.
Monemar
,
M.
Higashiwaki
,
A.
Kuramata
, and
S.
Yamakoshi
,
Thin Solid Films
666
,
182
(
2018
).
10.
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
,
E. G.
Víllora
,
K.
Shimamura
, and
S.
Yamakoshi
,
Appl. Phys. Express
5
,
035502
(
2012
).
11.
E.
Farzana
,
E.
Ahmadi
,
J. S.
Speck
,
A. R.
Arehart
, and
S. A.
Ringel
,
J. Appl. Phys.
123
,
161410
(
2018
).
12.
S.
Kumar
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
,
Appl. Phys. Express
15
,
054001
(
2022
).
13.
C.-H.
Lin
et al,
IEEE Electron Device Lett.
40
,
1487
(
2019
).
14.
K.
Zeng
,
A.
Vaidya
, and
U.
Singisetti
,
IEEE Electron Device Lett.
39
,
1385
(
2018
).
15.
S.
Sharma
,
L.
Meng
,
A. F. M. A. U.
Bhuiyan
,
Z.
Feng
,
D.
Eason
,
H.
Zhao
, and
U.
Singisetti
,
IEEE Electron Device Lett.
43
,
2029
(
2022
).
16.
Y.
Lv
et al,
IEEE Electron Device Lett.
40
,
83
(
2019
).
17.
Q.
He
et al,
IEEE Electron Device Lett.
43
,
1933
(
2022
).
18.
X.
Zhou
et al,
IEEE Trans. Electron Devices
68
,
1501
(
2021
).
19.
Z.
Hu
et al,
IEEE Electron Device Lett.
39
,
1564
(
2018
).
20.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
D.
Jena
, and
H. G.
Xing
,
IEEE Electron Device Lett.
41
,
107
(
2020
).
21.
X.
Zhou
,
Y.
Ma
,
G.
Xu
,
Q.
Liu
,
J.
Liu
,
Q.
He
,
X.
Zhao
, and
S.
Long
,
Appl. Phys. Lett.
121
,
223501
(
2022
).
22.
K. D.
Chabak
et al,
Appl. Phys. Lett.
109
,
213501
(
2016
).
23.
Y.
Wang
et al,
IEEE Trans. Power Electron.
37
,
3743
(
2022
).
24.
Y.
Lv
et al,
Phys. Status Solidi (RRL)
14
,
1900586
(
2019
).
25.
J. K.
Mun
,
K.
Cho
,
W.
Chang
,
H.-W.
Jung
, and
J.
Do
,
ECS J. Solid State Sci. Technol.
8
,
Q3079
(
2019
).
26.
K.
Tetzner
,
O.
Hilt
,
A.
Popp
,
S.
Bin Anooz
, and
J.
Würfl
,
Microelectron. Reliab.
114
,
113951
(
2020
).
27.
E.
Farzana
,
F.
Alema
,
W. Y.
Ho
,
A.
Mauze
,
T.
Itoh
,
A.
Osinsky
, and
J. S.
Speck
,
Appl. Phys. Lett.
118
,
162109
(
2021
).
28.
N.
Allen
,
M.
Xiao
,
X.
Yan
,
K.
Sasaki
,
M. J.
Tadjer
,
J.
Ma
,
R.
Zhang
,
H.
Wang
, and
Y.
Zhang
,
IEEE Electron Device Lett.
40
,
1399
(
2019
).
29.
S.
Roy
,
A.
Bhattacharyya
,
P.
Ranga
,
H.
Splawn
,
J.
Leach
, and
S.
Krishnamoorthy
,
IEEE Electron Device Lett.
42
,
1140
(
2021
).
30.
P. H.
Carey
,
J.
Yang
,
F.
Ren
,
R.
Sharma
,
M.
Law
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
8
,
Q3221
(
2019
).
31.
J.
Yang
,
F.
Ren
,
M.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
,
ECS J. Solid State Sci. Technol.
7
,
Q92
(
2018
).
32.
K.
Konishi
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
110
,
103506
(
2017
).
33.
T.
Horii
,
T.
Miyazaki
,
Y.
Saito
,
S.
Hashimoto
,
T.
Tanabe
, and
M.
Kiyama
,
Mater. Sci. Forum
615–617
,
963
(
2009
).
34.
Y.
Lei
,
H.
Shi
,
H.
Lu
,
D.
Chen
,
R.
Zhang
, and
Y.
Zheng
,
J. Semicond.
34
,
054007
(
2013
).
35.
M. C.
Tarplee
,
V. P.
Madangarli
,
Q.
Zhang
, and
T. S.
Sudarshan
,
IEEE Trans. Electron Devices
48
,
2659
(
2001
).
36.
D.
Das
and
S.
Jeon
,
IEEE Trans. Electron Devices
67
,
2489
(
2020
).
37.
J.
McPherson
,
J.-Y.
Kim
,
A.
Shanware
, and
H.
Mogul
,
Appl. Phys. Lett.
82
,
2121
(
2003
).
38.
H.
Wang
,
L.
Jiang
,
X.
Lin
,
S.
Lei
, and
H.
Yu
,
Chin. Phys. B
27
,
127302
(
2018
).
You do not currently have access to this content.