The high-quality semipolar ( 11 2 ¯ 2) AlGaN films with high Al contents were successfully deposited on ( 10 1 ¯ 0) m-plane sapphire substrates with the insertion of AlN/AlGaN superlattice (SL) by metal-organic chemical vapor deposition technology. The dependence of structural and optical properties of the ( 11 2 ¯ 2) AlGaN film on the deposition parameters for the inserted AlN/AlGaN SL was investigated extensively premised on the characterization results of the optical microscope, atomic force microscopy, relative optical transmittance spectroscopy, high-resolution x-ray diffraction, and photoluminescence spectroscopy. It was discovered that the insertion of the AlN/AlGaN SL grown under an optimized stabilization time of 10 s between the deposition of AlN and AlGaN sublayers could be used to make significant enhancements in surface morphological characteristics, crystal quality, and optical properties of the ( 11 2 ¯ 2) AlGaN film. The mechanism for the defects reduction in the ( 11 2 ¯ 2) AlGaN film was revealed to be owing to the increase in bending and annihilating probability of the threading dislocations, basal-plane stacking faults, and other structural defects promoted by introducing sufficiently high desorbed Ga atom-induced vacancy concentration in the optimized thermal treatment process.

1.
Z.
Li
,
L.
Wang
,
L.
Jiu
,
J.
Bruckbauer
,
Y.
Gong
,
Y.
Zhang
,
J.
Bai
,
R. W.
Martin
, and
T.
Wang
,
Appl.: Phys. Lett.
110
,
091102
(
2017
).
2.
M.
Kneissl
,
T.
Seong
,
J.
Han
, and
H.
Amano
,
Nat. Photonics
13
,
233
(
2019
).
3.
H. M.
Foronda
et al,
Appl. Phys. Lett.
117
,
221101
(
2020
).
4.
X.
Luo
et al,
Mater. Sci. Semicond. Process.
144
,
106612
(
2022
).
5.
Q.
Dai
,
X.
Zhang
,
J.
Zhao
,
H.
Luan
,
Z.
Liang
, and
Y.
Cui
,
Mater. Sci. Semicond. Process.
58
,
30
(
2017
).
6.
H. M.
Foronda
,
S.
Graupeter
,
F.
Mehnke
,
J.
Enslin
,
T.
Wernicke
, and
M.
Kneissl
,
Jpn. J. Appl. Phys.
58
,
SC1026
(
2019
).
7.
C.
Netzel
et al,
Appl. Phys. Lett.
104
,
051906
(
2014
).
8.
Z.
Liang
,
X.
Zhang
,
Q.
Dai
,
H.
Luan
,
J.
Zhao
,
Z.
Wu
,
G.
Hu
, and
Y.
Cui
,
J. Mater. Sci. Mater. Electron.
28
,
15217
(
2017
).
9.
H.
Luan
,
X.
Zhang
,
Z.
Liang
,
Y.
Wang
,
Q.
Dai
,
H.
Yang
,
Z.
Wu
,
J.
Zhao
, and
Y.
Cui
,
Phys. Status Solidi A
214
,
1600802
(
2017
).
10.
D. V.
Dinh
,
N.
Hu
,
Y.
Honda
,
H.
Amano
, and
M.
Pristovsek
,
J. Mater. Chem. C
8
,
8668
(
2020
).
11.
G.
Yang
,
X.
Zhang
,
Z.
Wu
,
J.
Zhao
,
A.
Nasir
,
S.
Chen
,
A.
Fan
, and
Y.
Cui
,
Superlattice Microst.
125
,
338
(
2019
).
12.
X.
Luo
et al,
Appl. Surf. Sci.
608
,
155262
(
2023
).
13.
A. D.
Bykhovski
,
B. L.
Gelmont
, and
M. S.
Shur
,
J. Appl. Phys.
81
,
6332
(
1997
).
14.
C.-Y.
Huang
,
C.-L.
Tsai
,
C.-Y.
Huang
,
R.-Y.
Yang
,
Y. S.
Wu
,
H.-W.
Yen
, and
Y.-K.
Fu
,
Appl. Phys. Lett.
117
,
261102
(
2020
).
15.
M.
Nemoz
,
F.
Semond
,
S.
Rennesson
,
M.
Leroux
,
S.
Bouchoule
,
G.
Patriarche
, and
J.
Zuniga-Perez
,
Superlattice Microst.
150
,
106801
(
2021
).
16.
A.-Z.
Omar
,
A.
Shuhaimi
,
A. H. A.
Makinudin
,
M. I. M.
Abdul Khudus
, and
A.
Supangat
,
Mater. Sci. Semicond. Process.
86
,
1
(
2018
).
17.
Z.
Wu
,
X.
Zhang
,
J.
Zhao
,
A.
Fan
,
H.
Chen
,
S.
Chen
,
N.
Abbas
, and
Y.
Cui
,
Superlattice Microst.
125
,
310
(
2019
).
18.
J.
He
et al,
Mater. Sci. Semicond. Process.
90
,
219
(
2019
).
19.
J.
Wang
et al,
Appl. Phys. Lett.
118
,
162103
(
2021
).
20.
21.
O.
Ambacher
et al.,
J. Vac. Sci. Technol. B
14
,
3532
(
1996
).
22.
D. V.
Dinh
,
M.
Conroy
,
V. Z.
Zubialevich
,
N.
Petkov
,
J. D.
Holmes
, and
P. J.
Parbrook
,
J. Cryst. Growth
414
,
94
(
2015
).
23.
K.
Balakrishnan
,
M.
Lachab
,
H. C.
Chen
,
D.
Blom
,
V.
Adivarahan
,
I.
Ahmad
,
Q.
Fareed
, and
M. A.
Khan
,
Phys. Status Solidi A
208
,
2724
(
2011
).
24.
25.
K. B.
Nam
,
M. L.
Nakarmi
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
86
,
222108
(
2005
).
26.
N.
Nepal
,
M. L.
Nakarmi
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
89
,
092107
(
2006
).
27.
D. V.
Dinh
,
S. N.
Alam
, and
P. J.
Parbrook
,
J. Cryst. Growth
435
,
12
(
2016
).
28.
S.
Woo
,
M.
Kim
,
B.
So
,
G.
Yoo
,
J.
Jang
,
K.
Lee
, and
O.
Nam
,
J. Cryst. Growth
407
,
6
(
2014
).
29.
J.
Zhao
et al,
Jpn. J. Appl. Phys.
59
,
010909
(
2020
).
30.
J.
Jeong
,
J.
Jang
,
J.
Hwang
,
C.
Jung
,
J.
Kim
,
K.
Lee
,
H.
Lim
, and
O.
Nam
,
J. Cryst. Growth
370
,
114
(
2013
).
31.
R. E.
Smallman
and
A. H. W.
Ngan
,
Modern Physical Metallurgy
(
Elsevier
, Amsterdam,
2014
), pp.
121
158
.
You do not currently have access to this content.