For continual scaling in microelectronics, new processes for precise high volume fabrication are required. Area-selective atomic layer deposition (ASALD) can provide an avenue for self-aligned material patterning and offers an approach to correct edge placement errors commonly found in top-down patterning processes. Two-dimensional transition metal dichalcogenides also offer great potential in scaled microelectronic devices due to their high mobilities and few-atom thickness. In this work, we report ASALD of MoS2 thin films by deposition with MoF6 and H2S precursor reactants. The inherent selectivity of the MoS2 atomic layer deposition (ALD) process is demonstrated by growth on common dielectric materials in contrast to thermal oxide/ nitride substrates. The selective deposition produced few layer MoS2 films on patterned growth regions as measured by Raman spectroscopy and time-of-flight secondary ion mass spectrometry. We additionally demonstrate that the selectivity can be enhanced by implementing atomic layer etching (ALE) steps at regular intervals during MoS2 growth. This area-selective ALD process provides an approach for integrating 2D films into next-generation devices by leveraging the inherent differences in surface chemistries and providing insight into the effectiveness of a supercycle ALD and ALE process.

1.
G. E.
Moore
, presented at the Integrated Circuit Metrology, Inspection, and Process Control IX (
1995
).
2.
R.
Seisyan
,
Tech. Phys.
56
,
1061
(
2011
).
3.
A.
Pimpin
and
W.
Srituravanich
,
Eng. J.
16
,
37
(
2012
).
4.
Y.
Xia
and
G. M.
Whitesides
,
Ann. Rev. Mater. Sci.
28
,
153
(
1998
).
5.
F. M.
Wisser
,
B.
Schumm
,
G.
Mondin
,
J.
Grothe
, and
S.
Kaskel
,
J. Mater. Chem. C
3
,
2717
(
2015
).
6.
K.
Nojiri
,
Dry Etching Technology for Semiconductors
(
Springer
,
2015
).
7.
J. C.
Love
,
K. E.
Paul
, and
G. M.
Whitesides
,
Adv. Mater
13
,
604
(
2001
).
8.
9.
R.
Clark
,
K.
Tapily
,
K.-H.
Yu
,
T.
Hakamata
,
S.
Consiglio
,
D.
O’Meara
,
C.
Wajda
,
J.
Smith
, and
G.
Leusink
,
Appl. Phys. Lett. Mater.
6
,
058203
(
2018
).
10.
G. N.
Parsons
and
R. D.
Clark
,
Chem. Mater
32
,
4920
(
2020
).
11.
S. M.
George
,
Chem. Rev
110
,
111
(
2010
).
12.
A. J. M.
Mackus
,
A. A.
Bol
, and
W. M. M.
Kessels
,
Nanoscale
6
,
10941
(
2014
).
13.
A. J. M.
Mackus
,
M. J. M.
Merkx
, and
W. M. M.
Kessels
,
Chem. Mater
31
,
2
(
2019
).
14.
X.
Jiang
and
S. F.
Bent
,
J. Phys. Chem. C
113
,
17613
(
2009
).
15.
E.
Färm
,
M.
Vehkamäki
,
M.
Ritala
, and
M.
Leskelä
,
Semicond. Sci. Technol.
27
,
074004
(
2012
).
16.
T.-L.
Liu
and
S. F.
Bent
,
Chem. Mater
33
,
513
(
2021
).
17.
I.-K.
Oh
,
T. E.
Sandoval
,
T.-L.
Liu
,
N. E.
Richey
, and
S. F.
Bent
,
Chem. Mater
33
,
3926
(
2021
).
18.
A.
Mameli
,
M. J. M.
Merkx
,
B.
Karasulu
,
F.
Roozeboom
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
ACS Nano
11
,
9303
(
2017
).
19.
R. C.
Longo
,
S.
McDonnell
,
D.
Dick
,
R. M.
Wallace
,
Y. J.
Chabal
,
J. H. G.
Owen
,
J. B.
Ballard
,
J. N.
Randall
, and
K.
Cho
,
J. Vac. Sci. Technol. B
32
,
03D
(
2014
).
20.
S. E.
Atanasov
,
B.
Kalanyan
, and
G. N.
Parsons
,
J. Vac. Sci. Technol. A
34
,
01A
(
2016
).
21.
B.
Groven
,
Y.
Tomczak
,
M.
Heyns
,
I.
Radu
, and
A.
Delabie
,
J. Appl. Phys
128
,
175302
(
2020
).
22.
X.
Chen
,
Y. J.
Park
,
T.
Das
,
H.
Jang
,
J.-B.
Lee
, and
J.-H.
Ahn
,
Nanoscale
8
,
15181
(
2016
).
23.
S. F.
Bartolucci
,
D.
Kaplan
, and
J. A.
Maurer
,
2D Mater.
4
,
021017
(
2017
).
24.
W.
Ahn
,
H.
Lee
,
H.
Kim
,
M.
Leem
,
H.
Lee
,
T.
Park
,
E.
Lee
, and
H.
Kim
,
Phys. Status Solidi RRL
15
,
2000533
(
2021
).
25.
A. U.
Mane
,
S.
Letourneau
,
D. J.
Mandia
,
J.
Liu
,
J. A.
Libera
,
Y.
Lei
,
Q.
Peng
,
E.
Graugnard
, and
J. W.
Elam
,
J. Vac. Sci. Technol. A
36
,
01A125
(
2017
).
26.
J.
Soares
et al,
J. Vac. Sci. Technol. A
40
,
062202
(
2022
).
27.
M.
Lawson
,
E.
Graugnard
, and
L.
Li
,
Appl. Surf. Sci.
541
,
148461
(
2021
).
28.
W. L.
Gladfelter
,
Chem. Mater
5
,
1372
(
1993
).
29.
A. C.
Dillon
,
A. W.
Ott
,
J. D.
Way
, and
S. M.
George
,
Surf. Sci.
322
,
230
(
1995
).
30.
R. L.
Puurunen
,
J. Appl. Phys.
97
, 121301 (
2005
).
31.
R. A.
Wind
and
S. M.
George
,
J. Phys. Chem. A
114
,
1281
(
2010
).
32.
A. M.
Hoyas
,
C. M.
Whelan
,
J.
Schuhmacher
,
J. P.
Celis
, and
K.
Maex
,
Electrochem. Solid-State Lett.
9
,
F64
(
2006
).
33.
K. M.
Chang
,
S. W.
Wang
,
C. H.
Li
,
J. Y.
Tsai
, and
T. H.
Yeh
,
Jpn. J. Appl. Phys.
35
,
6555
(
1996
).
34.
P. C.
Lemaire
,
M.
King
, and
G. N.
Parsons
,
J. Chem. Phys
146
,
052811
(
2017
).
35.
S.
Letourneau
,
M. J.
Young
,
N. M.
Bedford
,
Y.
Ren
,
A.
Yanguas-Gil
,
A. U.
Mane
,
J. W.
Elam
, and
E.
Graugnard
,
ACS Appl. Nano Mater.
1
,
4028
(
2018
).
36.
H.
Li
,
Q.
Zhang
,
C. C. R.
Yap
,
B. K.
Tay
,
T. H. T.
Edwin
,
A.
Olivier
, and
D.
Baillargeat
,
Adv. Funct. Mater.
22
,
1385
(
2012
).
37.
M. F. J.
Vos
,
S. N.
Chopra
,
M. A.
Verheijen
,
J. G.
Ekerdt
,
S.
Agarwal
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
Chem. Mater.
31
,
3878
(
2019
).
38.
S. K.
Song
,
H.
Saare
, and
G. N.
Parsons
,
Chem. Mater.
31
,
4793
(
2019
).
39.
H.
Saare
,
S. K.
Song
,
J.-S.
Kim
, and
G. N.
Parsons
,
J. Appl. Phys.
128
,
105302
(
2020
).
40.
R.
Vallat
,
R.
Gassilloud
,
B.
Eychenne
, and
C.
Vallée
,
J. Vac. Sci. Technol. A
35
,
01B
(
2017
).
41.
J.
Soares
,
A. U.
Mane
,
D.
Choudhury
,
S.
Letourneau
,
S. M.
Hues
,
J. W.
Elam
, and
E.
Graugnard
,
Chem. Mater.
35
,
927
(
2023
).
42.
See supplementary material online for additional Raman spectra, an atomic force micrograph at a template edge, additional ToF-SIMS maps, and additional XPS data.

Supplementary Material

You do not currently have access to this content.