The objective of this work is to describe the current state of the rapidly evolving field of 3D piezoelectric microelectromechanical systems (piezoMEMS), and where it needs to go to fully leverage the potential performance benefits offered by atomic layer deposition (ALD). We define 3D piezoMEMS as the application of piezoelectric ALD films to 3D, high aspect-ratio, mechanically pliable structures. Since there are so few existing reports of 3D piezoMEMS, a literature review of ALD films applied to conventional microelectromechanical system (MEMS) devices is given. ALD processes for piezoelectric thin films are reviewed in the context of relevant applications such as transducers and actuators. Examples include aluminum nitride, hafnium zirconate, doped-hafnia, lead zirconate-titanate, lead hafnate, and lead hafnate-titanate. New concepts for ALD-enabled 3D piezoMEMS actuators are presented with supporting theoretical calculations that show that chip-scale mechanical work densities could be improved by 10 × compared to conventional planar piezoMEMS. 3D fabrication methods are also discussed, while the future needs of atomic layer processing are highlighted.

1.
Broadcom
, ACPF-7A24 2.4 GHz Wi-Fi bandpass filter for coexistence with LTE bands 7, 38, 40A, and 41B. (2018), see https://docs.broadcom.com/doc/ACPF-7A24-DS103 (accessed 3/19/2023).
2.
D.
Moy
, Avago technologies’ FBAR filter technology designed into latest generation of 4G & LTE smartphones (2012).
3.
R. R.
William Mueller
, There is still room for innovation in FBAR filtering to address 5G and beyond—An interview with Broadcom in C. Malaquin (Ed.) i-micronews.com (2019).
5.
TDK extends ultrasonic ToF sensor platform for long-range up to 5m
, TDK InvenSense, see https://invensense.tdk.com/ (2020).
6.
Working principles and development of MEMS inertial sensors
, see https://www.siliconsensing.com/technology/mems-accelerometers/ (accessed 3/19/2023).
7.
U.
Pisipati
, “Piezoelectric MEMS microphones the only way to build reliable arrays for far-field voice recognition” (Vesper Technologies, Inc., Boston, MA, 2019), available at https://vespermems.com/wp-content/uploads/2019/02/White-Paper-Piezoelectric-Microphones-Only-way-to-build-highly-reliable-far-field-arrays-1.pdf.
8.
World’s first Adaptive ZeroPower Listening mic enables ‘power cord free’ smart home devices
, Electronic product design and test, IML Group PLC, see https://www.epdtonthenet.net/ (2020).
9.
See https://usound.com/about-usound/ (accessed 3/19/2023).
10.
G. L.
Smith
et al,
J. Am. Ceram. Soc.
95
,
1777
(
2012
).
11.
K.
Kurmendra
,
Recent Pat. Nanotechnol.
27
, 2525 (
2021
).
13.
J. S.
Pulskamp
et al,
Proc. IEEE Micr. Elect.
4
, 900 (
2009
).
14.
G. R.
Fox
,
J. S.
Pulskamp
, and
R. G.
Polcawich
, U.S. Patent No. 10043565 (2016).
15.
G. R.
Fox
,
J. S.
Pulskamp
, and
R. G.
Polcawich
, Ferroelectric U.S. Patent No. 10043565 (2018).
16.
G.
Piazza
,
P. J.
Stephanou
, and
A. P.
Pisano
,
JMemS
15
, 1406 (
2006
).
17.
A.
Ansari
, in
2019 IEEE Mtt-S International Wireless Symposium (IWS 2019)
, Guangzhou, China, 19–22 May 2019 (IEEE,
2019
).
18.
K.
Oldham
et al,
InFer
95
, 54 (
2007
).
19.
J. S.
Pulskamp
et al,
MRS Bull.
37
,
1062
(
2012
).
20.
Y.
Nemirovsky
,
A.
Nemirovsky
,
P.
Muralt
, and
N.
Setter
,
Sens. Actuators A: Phys.
56
,
239
(
1996
).
21.
G. L.
Smith
,
R. Q.
Rudy
,
R. G.
Polcawich
, and
D. L.
Devoe
,
Sens. Actuators A: Phys.
188
,
305
(
2012
).
22.
A.
Piot
et al, in
2015 Dgon Inertial Sensors and Systems Symposium (ISS)
, Karlsruhe, Germany, 22–23 September 2015 (IEEE, New York,
2015
).
23.
S.
Roundy
and
S.
Trolier-McKinstry
,
MRS Bull.
43
,
206
(
2018
).
24.
Allied Market Research
, 3D IC Market by Type (Stacked 3D and Monolithic 3D), Component (Through-Silicon Via (TSV), Through Glass Via (TGV), and Silicon Interposer), Application (Logic, Imaging & Optoelectronics, Memory, MEMS/Sensors, LED, and Others), and End User (Consumer Electronics, Telecommunication, Automotive, Military & Aerospace, Medical Devices, Industrial, and Others): Global Opportunity Analysis and Industry Forecast, 2021–2030 (2021).
25.
i-Micronews Media
,
A Brave new MEMS World: A $18.2B Market by 2026
(
Yole Development
, Lyon-Villeurbanne, France,
2021
).
26.
Mordor Intelligence
, MEMS market—Growth, trends, COVID-19 impact, and forecast (2022–2027) (2021).
27.
A.
Keshavarzi
,
K.
Ni
,
W.
van den Hoek
,
S.
Datta
, and
A.
Raychowdhury
,
IEEE Micro
40
,
33
(
2020
).
28.
S.
Khanna
et al, in
2019 IEEE International Solid-State Circuits Conference—(ISSCC)
, San Francisco, CA, 17–21 February 2019 (IEEE, New York,
2019
).
29.
J.
Müller
et al, in
2013 IEEE International Electron Devices Meeting
, Washington, DC, 9–11 December 2013 (IEEE, New York,
2013
).
30.
T.
Mikolajick
,
U.
Schroeder
, and
S.
Slesazeck
,
IEEE Trans. Electron Devices
67
,
1434
(
2020
).
31.
G. D.
Wilk
,
M.
Verghese
,
P.
Chen
, and
J. W.
Maes
,
ECS Trans.
50
, 207 (
2013
).
32.
M.
Gutsche
et al,
Future Fab. Int.
15
(
2003
).
33.
R. W.
Johnson
,
A.
Hultqvist
, and
S. F.
Bent
,
Mater. Today
17
,
236
(
2014
).
34.
H. C. M.
Knoops
,
T.
Faraz
,
K.
Arts
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
37
, 030902 (
2019
).
35.
P. O.
Oviroh
,
R.
Akbarzadeh
,
D.
Pan
,
R. A. M.
Coetzee
, and
T.-C.
Jen
,
Sci. Technol. Adv. Mater.
20
,
465
(
2019
).
36.
P.
Poodt
et al,
J. Vac. Sci. Technol. A
30
, 010802 (
2011
).
37.
H.
Pedersen
,
S. T.
Barry
, and
J.
Sundqvist
,
J. Vac. Sci. Technol. A
39
,
051001
(
2021
).
38.
T. M.
Mayer
et al,
Appl. Phys. Lett.
82
, 2883 (
2003
).
39.
S. S.
Mani
et al,
MRS Proc.
605
, 135 (
1999
).
40.
C.
Nistorica
,
J.-F.
Liu
,
I.
Gory
,
G. D.
Skidmore
,
F. M.
Mantiziba
,
B. E.
Gnade
, and
J.
Kim
,
J. Vac. Sci. Technol. A
23
,
836
(
2005
).
41.
T.
Scharf
,
S.
Prasad
,
M.
Dugger
,
P.
Kotula
,
R.
Goeke
, and
R.
Grubbs
,
Acta Mater.
54
,
4731
(
2006
).
42.
R. L.
Puurunen
,
J.
Saarilahti
, and
H.
Kattelus
,
ECS Trans.
11
,
3
(
2007
).
43.
M. M.
Winterkorn
et al, in
Solid-State Sensors, Actuators and Microsystems Workshop
, Hilton Head Island, SC, 5–9 June 2016 (Transducer Research Foundation, Inc., San Diego, CA,
2016
).
44.
G.
Smith
et al, in
Solid-State Sensors, Actuators, and Microsystems Workshop
,
Hilton Head Island, SC
, (Transducer Research Foundation, Inc., San Diego, CA,
2010
).
45.
C. F.
Herrmann
,
F. W.
DelRio
,
S. M.
George
, and
V. M.
Bright
,
Proc. Soc. Photo-Opt. Ins.
5715
, 159 (
2005
).
46.
H. H.
Sønsteby
,
H.
Fjellvåg
, and
O.
Nilsen
,
Adv. Mater. Interfaces
4
,
1600903
(
2017
).
47.
O.
Hahtela
,
P.
Sievilä
,
N.
Chekurov
, and
I.
Tittonen
,
JMiMi
17
, 737 (
2007
).
48.
K. R.
Udayakumar
,
M.
Denison
, and
T. S.
Moise
, Texas Instruments Inc., U.S. Patent No. 13/946,144 (2014).
49.
J. R.
Martin
, U.S. Patent No. 7,939,932 B2 (2011).
50.
F.
Nehm
et al,
ACS Appl. Mater. Interfaces
7
,
22121
(
2015
).
51.
C.-M.
Chen
, U.S Patent No. 17/279054 (2021).
52.
S. R.
Summerfelt
,
T. S.
Moise
, and
G. B.
Basim
, U.S. Patent No. 13/303,541 (2012).
53.
R. J.
Aggarwal
,
S. R.
Summerfelt
,
G. B.
Basim
, and
T. S.
Moise
, U.S. Patent No. 12/890,219 (2012).
54.
M.
Fraga
and
R.
Pessoa
,
Micromachines
11
, 799 (
2020
).
55.
N. D.
Hoivik
,
J. W.
Elam
,
R. J.
Linderman
,
V. M.
Bright
,
S. M.
George
, and
Y. C.
Lee
,
Sens. Actuators A: Phys.
103
,
100
(
2003
).
56.
F. W.
DelRio
et al, in
2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535)
, Fort Worth, TX, 6–11 June 2004 (IEEE, New York,
2004
).
57.
R. L.
Puurunen
et al,
Sens. Actuators A: Phys.
188
, 240 (
2012
).
58.
K. J.
Dorsey
et al,
Adv. Mater.
31
, 1901944 (
2019
).
59.
D.
Dudley
,
W.
Duncan
, and
J.
Slaughter
, in Emerging Digital Micromirror Device (DMD) Applications, SPIE2023, San Jose, CA, 2003 (SPIE, Bellingham, WA,
2003
).
60.
S.
Waheed
et al,
Lap Chip
16
, 1993 (
2016
).
61.
M.
Petruzzella
et al,
Opt. Express
26
,
3882
(
2018
).
62.
E.
Cianci
et al,
Sens. Actuators A: Phys.
282
,
124
(
2018
).
63.
J. R.
Bickford
,
H. H.
Sonsteby
,
N. A.
Strnad
,
P. Y.
Zavalij
,
R. C.
Hoffman
,
J. Vac. Sci. Technol. A
37
,
020904
(
2019
).
64.
L.
Strambini
et al,
Nano Energy
68
,
104281
(
2020
).
65.
J.
Liu
,
H.
Zhu
, and
M. H. A.
Shiraz
,
Front. Energy Res.
6
, 10 (
2018
).
66.
B.
Hanrahan
,
C.
Mart
,
T.
Kampfe
,
M.
Czernohorsky
,
W.
Weinreich
, and
Smith
,
A.
,
Energy Technol.
7
,
1980371
(
2019
).
67.
C.
Mart
et al, in
International Electronic Devices Meeting
, San Francisco, CA, 12–18 December 2020 (IEEE, New York,
2020
).
68.
N. H.
Lee
et al,
Electron. Mater. Lett.
13
, 318 (
2017
).
69.
T.
Kurose
,
R.
Shirai
,
N.
Vasiljevic
, and
M.
Hayase
,
J. Phys.: Conf. Ser.
1407
,
012008
(
2019
).
70.
H. T.
Le
et al,
Microsyst. Nanoeng.
7
, 59 (
2021
).
71.
Y.
Lee
and
S. M.
George
,
ACS Nano
9
, 2061 (
2015
).
72.
C. M.
Huard
et al,
J. Vac. Sci. Technol. A
35
,
031306
(
2017
).
73.
T.
Faraz
et al,
J. Appl. Phys.
128
, 213301 (
2020
).
74.
T.
Faraz
,
F.
Roozeboom
,
H. C. M.
Knoops
, and
W. M. M.
Kessels
,
ECS J. Solid State Sci. Technol.
4
,
N5023
(
2015
).
75.
A.
Fischer
,
A.
Routzahn
,
S. M.
George
, and
T.
Lill
,
J. Vac. Sci. Technol., A
39
,
030801
(
2021
).
76.
G. N.
Parsons
, in
Proceedings of SPIE 11326, Advances in Patterning Materials and Processes XXXVII
, San Jose, CA, 24 March 2020 (SPIE, Bellingham, WA,
2020
), p.
113260Q
.
77.
W. H.
Kim
et al,
ACS Nano
10
, 4451 (
2016
).
78.
M. F. J.
Vos
et al,
Chem. Mater.
31
, 3878 (
2019
).
79.
A.
Thakre
et al,
Sensors
19
,
2170
(
2019
).
80.
S.
Gong
,
R.
Lu
,
Y.
Yang
,
L.
Gao
, and
A. E.
Hassanien
,
IEEE J. Microwaves
1
,
601
(
2021
).
81.
G. G.
Fattinger
, in
2008 IEEE International Frequency Control Symposium
, Honolulu, HI, 19–21 May 2008 (IEEE, New York,
2008
).
82.
M. A.
Dubois
,
P.
Muralt
, and
V.
Plessky
,
Ultrasonics
2
, 907 (
1999
).
83.
R.
Ruby
, “
A decade of Fbar success and what is needed for another successful decade
,” in
2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA)
, Shenzhen, Guangdong Province, China, 9–11 December 2011 (IEEE, New York,
2011
).
84.
T.
Riekkinen
,
A.
Nurmela
,
J.
Molarius
,
T.
Pensala
,
P.
Kostamo
,
M.
Ylilammi
, and
S.
van Dijken
,
Thin Solid Films
517
,
6588
(
2009
).
85.
G.
Piazza
,
V.
Felmetsger
,
P.
Muralt
,
R. H.
Olsson
III
, and
R.
Ruby
,
MRS Bull.
37
,
1051
(
2012
).
86.
T.
Abu Ali
,
J.
Pilz
,
P.
Schäffner
,
M.
Kratzer
,
C.
Teichert
,
B.
Stadlober
, and
A. M.
Coclite
,
Phys. Status Solidi A
217
,
2000319
(
2020
).
87.
J. A.
Christman
,
R. R.
Woolcott
, Jr.
,
A. I.
Kingon
, and
R. J.
Nemanich
,
Appl. Phys. Lett.
73
,
3851
(
1998
).
88.
M.
Ramezani
,
M.
Ghatge
,
R.
Tabrizian
, in
2018 IEEE Micro Electro Mechanical Systems (MEMS)
, Belfast, UK, 21–25 January 2018 (IEEE, New York,
2018
).
89.
M.
Ghatge
,
G.
Walters
,
T.
Nishida
,
R.
Tabrizian
, in
IEEE International Electron Devices Meeting (IEDM)
, San Francisco, CA, 1–5 December 2018 (IEEE, New York,
2018
).
90.
M.
Ghatge
,
G.
Walters
,
T.
Nishida
, and
R.
Tabrizian
,
IEEE Electron Device Lett.
40
,
800
(
2019
).
91.
R.
Tabrizian
and
S.
Bhunia
,
IEEES
58
, 32 (
2021
).
92.
F.
Hakim
,
T.
Tharpe
, and
R.
Tabrizian
,
IEEE Microwave Wireless Components Lett.
31
,
701
(
2021
).
93.
R. Q.
Rudy
,
G. L.
Smith
,
D. L.
DeVoe
, and
R. G.
Polcawich
,
JMemS
24
, 108 (
2014
).
94.
C.-B.
Eom
and
S.
Trolier-McKinstry
,
MRS Bull.
37
, 1007 (
2012
).
95.
P.
Muralt
,
J. Am. Ceram. Soc.
91
,
1385
(
2008
).
96.
I.
Kanno
,
Jpn. J. Appl. Phys.
57
,
040101
(
2018
).
97.
J. S.
Pulskamp
and
R. G.
Polcawich
, Three dimensional piezoelectric MEMS, U.S. Patent Number 8966993B2 (2012).
98.
R. G.
Polcawich
and
J. S.
Pulskamp
, “
Additive processes for piezoelectric materials: Piezoelectric MEMS
,” in
MEMS Materials and Processes Handbook
(Springer, New York,
2011
).
99.
J. W.
Elam
,
D.
Routkevitch
,
P. P.
Mardilovich
, and
S. M.
George
,
Chem. Mater.
15
, 3507 (
2003
).
100.
M. J.
Sinclair
, “
ITHERM 2000
,” in
The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)
, Las Vegas, NV, 23–26 May 2000 (IEEE, New York,
2000
).
101.
L.
Ni
,
R. M.
Pocratsky
, and
M. P.
de Boer
,
Microsyst Nanoeng
7
, 6 (
2021
).
102.
R. Q.
Rudy
et al, in
2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)
, Shanghai, China, 24–28 January 2016 (IEEE, New York,
2016
).
103.
A. R.
Mazzoni
,
R.
Knight
, and
J.
Ryan Pulskamp
, “
Investigation of thermoelastic damping in microelectromechanical system (MEMS) quadruple-mass gyroscope (QMG) designs
,” in
A.R.L. U.S. Army Combat Capabilities Development Command (Ed.)
(United States Department of Defense, Washington, DC,
2021
).
104.
G. W.
Hwang
,
H. J.
Lee
,
K.
Lee
, and
C. S.
Hwang
,
J. Electrochem. Soc.
154
, G69 (
2007
).
105.
T.
Watanabe
,
S.
Hoffman-Eifert
,
C. S.
Hwang
, and
R.
Waser
,
J. Electrochem. Soc.
155
, D715 (
2008
).
106.
N. A.
Strnad
et al,
J. Am. Ceram. Soc.
104
, 1216 (
2020
).
107.
S.
Acharya
et al,
J. Mater. Chem. C
4
,
1945
(
2016
).
108.
E. L.
Lin
et al,
J. Appl. Phys.
126
, 064101 (
2019
).
109.
H. H.
Sonsteby
,
O.
Nilsen
, and
H.
Fjellvag
,
Glob. Chall.
3
, 1800114 (
2019
).
110.
D. S.
Fu
,
H.
Suzuki
,
T.
Ogawa
, and
K.
Ishikawa
,
Appl. Phys. Lett.
80
, 3572 (
2002
).
111.
H. H.
Sonsteby
,
V. A.-L. K.
Killi
,
L. M.
Rykkje
,
J. R.
Bickford
,
E. G.
Martin
,
R. C.
Hoffman
, and
O.
Nilsen
,
Dalton Trans.
51
,
927
(
2022
).
112.
F.
Martin
,
P.
Muralt
,
M.-A.
Dubois
, and
A.
Pezous
,
J. Vac. Sci. Technol. A
22
, 361 (
2004
).
113.
M.-A.
Dubois
and
P.
Muralt
,
Sens. Actuators A: Phys.
77
,
106
(
1999
).
114.
V. A.
Tarala
,
A. S.
Altakhov
,
M. G.
Ambartsumov
, and
V. Y.
Martens
,
TePhL
43
, 74 (
2017
).
115.
T.
Nguyen
,
N.
Adjeroud
,
S.
Glinsek
,
Y.
Fleming
,
J.
Guillot
,
P.
Grysan
, and
J.
Polesel-Maris
,
APL Mater.
8
,
071101
(
2020
).
116.
E.
Osterlund
,
H.
Seppanen
,
K.
Bespalova
,
V.
Miikkulainen
, and
M.
Paulasto-Kröckel
,
J. Vac. Sci. Technol. A
39
,
032403
(
2021
).
117.
N. A.
Strnad
et al,
J. Vac. Sci. Technol. A
40
,
042403
(
2022
).
118.
K.
Aoki
,
Y.
Fukuda
,
K.
Numata
, and
A.
Nishimura
,
Jpn. J. Appl. Phys.
34
, 192 (
1995
).
119.
G. B.
Rayner
,
N.
O'Toole
,
J.
Shallenberger
, and
B.
Johs
,
J. Vac. Sci. Technol. A
38
,
062408
(
2020
).
120.
M. K. S.
Barr
et al, in
ECS Meeting Abstracts MA2021-02(29)
, Digital, 10–14 October 2021 (ECS, Philadelphia, PA,
2021
).
121.
S. H.
Baek
et al,
Science
334
, 958 (
2011
).
122.
S. H.
Baek
,
M. S.
Rzchowski
, and
V. A.
Aksyuk
,
MRS Bull.
37
, 1022 (
2012
).
123.
A.
Kholkin
,
C.
Tantigate
, and
A.
Safari
,
InFer
22
, 515 (
1998
).
124.
P.
Muralt
and
J.
Baborowski
,
J. Electroceram.
12
,
101
(
2004
).
125.
D.
Kaden
,
S.
Gu-Stoppel
, and
H.
Quenzer
, in
Nanotech Conference & Expo 2012
, Santa Clara, CA, 18–21 June 2012 (CRC Press, Boca Raton, FL,
2012
).
126.
S.
Kirbach
,
K.
Kühnel
, and
W.
Weinreich
, in
2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)
, Cork, Ireland, 23–26 July 2018 (IEEE, New York,
2018
).
127.
S.
Fichtner
et al,
J. Appl. Phys.
122
,
035301
(
2017
).
128.
M.
Akiyama
,
T.
Kamohara
,
K.
Kano
,
A.
Teshigahara
,
Y.
Takeuchi
, and
N.
Kawahara
,
Adv. Mater.
21
,
593
(
2009
).
129.
T.
Yoshimura
et al,
Jpn. J. Appl. Phys.
49
, 021501 (
2010
).
130.
M.
Laurenti
,
M.
Castellino
,
D.
Perrone
,
A.
Asvarov
,
G.
Canavese
, and
A.
Chiolerio
,
Sci. Rep.
7
, 41957 (
2017
).
131.
Y. C.
Yang
et al,
Appl. Phys. Lett.
92
, 012907 (
2008
).
132.
M.
Sayer
et al,
MRS Proc.
243
, 39 (
2011
).
133.
M.
Sayer
et al,
MRS Proc.
310
, 37 (
2011
).
134.
I.
Kanno
,
S.
Fujii
,
T.
Kamada
, and
R.
Takayama
,
Appl. Phys. Lett.
70
,
1378
(
1997
).
135.
J. F.
Shepard
,
F.
Chu
,
I.
Kanno
, and
S.
Trolier-McKinstry
,
J. Appl. Phys.
85
,
6711
(
1999
).
136.
P.
Muralt
et al,
J. Appl. Phys.
83
,
3835
(
1998
).
137.
J. F.
Shepard
,
P. J.
Moses
, and
S.
Trolier-McKinstry
,
Sens. Actuators A: Phys.
71
,
133
(
1998
).
138.
N.
Ledermann
et al,
Sens. Actuators A: Phys.
105
,
162
(
2003
).
139.
S.
Trolier-McKinstry
and
P.
Muralt
,
J. Electroceram.
12
,
7
(
2004
).
140.
J.
Ouyang
,
R.
Ramesh
, and
A. L.
Roytburd
,
Appl. Phys. Lett.
86
, 152901 (
2005
).
141.
P.
Muralt
et al,
IEEE Trans. Ultrasonics, Ferroelectr., Frequency Control
52
,
2276
(
2005
).
142.
F.
Tyholdt
et al,
J. Electroceram.
19
, 311 (
2007
).
143.
F.
Calame
and
P.
Muralt
,
Appl. Phys. Lett.
90
,
062907
(
2007
).
144.
K.
Prume
,
P.
Muralt
,
T.
Schmitz-Kempen
, and
S.
Tiedke
,
Proc. SPIE
6526
, 65260G (
2007
).
145.
J.
Abergel
et al, in
IEEE Int Ultra Sym
, Dresden, Germany, 7–10 October 2012 (IEEE, New York,
2012
).
146.
A.
Mazzalai
et al, in
2014 Joint IEEE International Symposium on the Applications of Ferroelectrics, International Workshop on Acoustic Transduction Materials and Devices & Workshop on Piezoresponse Force Microscopy (ISAF/IWATMD/PFM)
, State College, PA, 12–16 May 2014 (IEEE, New York,
2014
).
147.
Y.
Tsujiura
,
S.
Kawabe
,
F.
Kurokawa
,
H.
Hida
, and
I.
Kanno
,
Jpn. J. Appl. Phys.
54
,
10NA04
(
2015
).
148.
K. R.
Udayakumar
,
P. J.
Schuele
,
J.
Chen
,
S. B.
Krupanidhi
, and
L. E.
Cross
,
J. Appl. Phys.
77
,
3981
(
1995
).
149.
G.
Vélu
and
D.
Rèmiens
,
J. Eur. Ceram. Soc.
19
,
2005
(
1999
).
150.
P.
Muralt
,
InFer
17
, 297 (
2006
).
151.
M.-A.
Dubois
,
P.
Muralt
,
D. V.
Taylor
, and
S.
Hiboux
,
InFer
22
, 535 (
2006
).
Published by AIP Publishing.
You do not currently have access to this content.