The effect of doping in the drift layer and the thickness and extent of extension beyond the cathode contact of a NiO bilayer in vertical NiO/β-Ga2O3 rectifiers is reported. Decreasing the drift layer doping from 8 × 1015 to 6.7 × 1015 cm−3 produced an increase in reverse breakdown voltage (VB) from 7.7 to 8.9 kV, the highest reported to date for small diameter devices (100 μm). Increasing the bottom NiO layer from 10 to 20 nm did not affect the forward current–voltage characteristics but did reduce reverse leakage current for wider guard rings and reduced the reverse recovery switching time. The NiO extension beyond the cathode metal to form guard rings had only a slight effect (∼5%) in reverse breakdown voltage. The use of NiO to form a pn heterojunction made a huge improvement in VB compared to conventional Schottky rectifiers, where the breakdown voltage was ∼1 kV. The on-state resistance (RON) was increased from 7.1 m Ω cm2 in Schottky rectifiers fabricated on the same wafer to 7.9 m Ω cm2 in heterojunctions. The maximum power figure of merit (VB)2/RON was 10.2 GW cm−2 for the 100 μm NiO/Ga2O3 devices. We also fabricated large area (1 mm2) devices on the same wafer, achieving VB of 4 kV and 4.1 A forward current. The figure-of-merit was 9 GW  cm−2 for these devices. These parameters are the highest reported for large area Ga2O3 rectifiers. Both the small area and large area devices have performance exceeding the unipolar power device performance of both SiC and GaN.

1.
M. H.
Wong
and
M.
Higashiwaki
,
IEEE Trans. Electron Devices
67
,
3925
(
2020
).
2.
X.
Lu
,
Y. X.
Deng
,
Y. L.
Pei
,
Z. M.
Chen
, and
G.
Wang
,
J. Semicond.
44, 061802 (
2023
).
3.
Andrew J.
Green
et al,
APL Mater.
10
,
029201
(
2022
).
4.
S. J.
Pearton
,
Fan
Ren
,
Marko
Tadjer
, and
Jihyun
Kim
,
J. Appl. Phys.
124
,
220901
(
2018
).
5.
Chenlu
Wang
et al,
J. Phys. D: Appl. Phys.
54
,
243001
(
2021
).
6.
Y.
Kokubun
,
S.
Kubo
, and
S.
Nakagomi
,
Appl. Phys. Express
9
,
091101
(
2016
).
7.
Yuxin
Deng
et al,
Appl. Surf. Sci.
622
,
156917
(
2023
).
8.
Maria Isabel
Pintor-Monroy
,
Diego
Barrera
,
Bayron L.
Murillo-Borjas
,
Francisco Javier
Ochoa-Estrella
,
Julia W. P.
Hsu
, and
Manuel A.
Quevedo-Lopez
,
ACS Appl. Mater. Interfaces
10
,
38159
(
2018
).
9.
Xinyi
Xia
,
Jian-Sian
Li
,
Chao-Ching
Chiang
,
Timothy Jinsoo
Yoo
,
Fan
Ren
,
Honggyu
Kim
, and
S. J.
Pearton
,
J. Phys. D: Appl. Phys.
55
,
385105
(
2022
).
10.
Hehe
Gong
,
Xuanhu
Chen
,
Yang
Xu
,
Yanting
Chen
,
Fangfang
Ren
,
Bin
Liu
,
Shulin
Gu
,
Rong
Zhang
, and
Jiandong
Ye
,
IEEE Trans. Electron Devices
67
,
3341
(
2020
).
11.
S.
Sharma
,
K.
Zeng
,
S.
Saha
, and
U.
Singisetti
,
IEEE Electron Device Lett.
41
,
836
(
2020
).
12.
Jincheng
Zhang
et al,
Nat. Commun.
13
,
3900
(
2022
).
13.
Pengfei
Dong
,
Jincheng
Zhang
,
Qinglong
Yan
,
Zhihong
Liu
,
Peijun
Ma
,
Hong
Zhou
, and
Yue
Hao
,
IEEE Electron Device Lett.
43
,
765
(
2022
).
14.
Jian-Sian
Li
,
Chao-Ching
Chiang
,
Xinyi
Xia
,
Timothy Jinsoo
Yoo
,
Fan
Ren
,
Honggyu
Kim
, and
S. J.
Pearton
,
Appl. Phys. Lett.
121
,
042105
(
2022
).
15.
S.
Roy
,
A.
Bhattacharyya
,
P.
Ranga
,
H.
Splawn
,
J.
Leach
, and
S.
Krishnamoorthy
,
IEEE Electron Device Lett.
42
,
1140
(
2021
).
16.
Arkka
Bhattacharyya
et al,
Appl. Phys. Express
15
,
061001
(
2022
).
17.
Kevin. D.
Chabak
et al,
Semicond. Sci. Technol.
35
,
013002
(
2020
).
18.
Zongyang
Hu
et al,
Appl. Phys. Lett.
113
,
122103
(
2018
).
19.
Ribhu
Sharma
,
Minghan
Xian
,
Chaker
Fares
,
Mark E.
Law
,
Marko
Tadjer
,
Karl D.
Hobart
,
Fan
Ren
, and
Stephen J.
Pearton
,
J. Vac. Sci. Technol. A
39
,
013406
(
2021
).
20.
Wenshen
Li
,
Devansh
Saraswat
,
Yaoyao
Long
,
Kazuki
Nomoto
,
Debdeep
Jena
, and
Huili Grace
Xing
,
Appl. Phys. Lett.
116
,
192101
(
2020
).
21.
Y.
Lv
et al,
IEEE Trans. Power Electron.
36
,
6179
(
2021
).
22.
C.
Liao
et al,
IEEE Trans. Electron Devices
69
,
5722
(
2022
).
23.
Ming
Xiao
et al,
IEEE Trans. Power Electron.
36
,
8565
(
2021
).
24.
X.
Lu
,
Xianda
Zhou
,
Huaxing
Jiang
,
Kar Wei
Ng
,
Zimin
Chen
,
Yanli
Pei
,
Kei May
Lau
, and
Gang
Wang
,
IEEE Electron Device Lett.
41
,
449
(
2020
).
25.
Chenlu
Wang
et al,
IEEE Electron Device Lett.
42
,
485
(
2021
).
26.
Qinglong
Yan
et al,
Appl. Phys. Lett.
118
,
122102
(
2021
).
27.
H. H.
Gong
,
X. H.
Chen
,
Y.
Xu
,
F.-F.
Ren
,
S. L.
Gu
, and
J. D.
Ye
,
Appl. Phys. Lett.
117
,
022104
(
2020
).
28.
Hehe
Gong
et al,
IEEE Trans. Power Electron.
36
,
12213
(
2021
).
29.
H. H.
Gong
et al,
Appl. Phys. Lett.
118
,
202102
(
2021
).
30.
W.
Hao
et al,
Appl. Phys. Lett.
118
,
043501
(
2021
).
31.
F.
Zhou
et al,
IEEE Trans. Power Electron.
37
,
1223
(
2022
).
32.
Qinglong
Yan
et al,
Appl. Phys. Lett.
120
,
092106
(
2022
).
33.
Jian Sian
Li
,
Hsiao Hsuan
Wan
,
Chao Ching
Chiang
,
Xinyi
Xia
,
Timothy
Yoo
,
Honggyu
Kim
,
Fan
Ren
, and
S. J.
Pearton
,
Crystals
13
,
886
(
2023
).
34.
Jiaye
Zhang
et al,
ACS Appl. Electron. Mater.
2
,
456
(
2020
).
35.
Yuangang
Wang
et al,
IEEE Trans. Power Electron.
37
,
3743
(
2022
).
36.
Hong
Zhou
,
Shifan
Zeng
,
Jincheng
Zhang
,
Zhihong
Liu
,
Qian
Feng
,
Shengrui
Xu
,
Jinfeng
Zhang
, and
Yue
Hao
,
Crystals
11
,
1186
(
2021
).
37.
Zhengpeng
Wang
et al,
IEEE Trans. Electron Devices
69
,
981
(
2022
).
38.
Boyan
Wang
,
Ming
Xiao
,
Joseph
Spencer
,
Yuan
Qin
,
Kohei
Sasaki
,
Marko J.
Tadjer
, and
Yuhao
Zhang
,
IEEE Electron Device Lett.
44
,
221
(
2023
).
39.
F.
Zhou
et al,
Appl. Phys. Lett.
119
,
262103
(
2021
).
40.
J.
Yang
,
F.
Ren
,
Y.-T.
Chen
,
Y.-T.
Liao
,
C.-W.
Chang
,
J.
Lin
,
M. J.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
,
IEEE J. Electron Devices Soc.
7
,
57
(
2019
).
41.
Yen-Ting
Chen
,
Jiancheng
Yang
,
Fan
Ren
,
Chin-Wei
Chang
,
Jenshan
Lin
,
S. J.
Pearton
,
Marko J
Tadjer
,
Akito
Kuramata
, and
Yu-Te
Liao
,
ECS J. Solid State Sci. Technol.
8
,
Q3229
(
2019
).
42.
Jian-Sian
Li
,
Chao-Ching
Chiang
,
Xinyi
Xia
,
Fan
Ren
, and
S. J.
Pearton
,
J. Vac. Sci. Technol. A
40
,
063407
(
2022
).
43.
W.
Hao
,
Q.
He
,
X.
Zhou
,
X.
Zhao
,
G.
Xu
, and
S.
Long
,
2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD)
,
Vancouver, BC, Canada
, September 2022 (IEEE, New York,
2022
), pp.
105
108
.
44.
Weibing
Hao
et al,
2022 International Electron Devices Meeting (IEDM)
,
San Francisco, CA
, December 2022 (IEEE, New York,
2022
), pp.
9.5.1
9.5.4
.
45.
X.
Zhou
,
Q.
Liu
,
W.
Hao
,
G.
Xu
, and
S.
Long
,
2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD)
,
Vancouver, BC
, October 2022 (
IEEE
, New York,
2022
), pp.
101
104
.
46.
Yuan
Qin
,
Zhengpeng
Wang
,
Kohei
Sasaki
,
Jiandong
Ye
, and
Yuhao
Zhang
,
Jpn. J. Appl. Phys.
62
,
SF0801
(
2023
).
47.
Zhengpeng
Wang
et al,
IEEE Trans. Electron Devices
69
,
981
(
2022
).
48.
J.
Yang
,
F.
Ren
,
M.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
,
AIP Adv.
8
,
055026
(
2018
).
49.
J.
Yang
,
C.
Fares
,
R.
Elhassani
,
M.
Xian
,
F.
Ren
,
S. J.
Pearton
,
M.
Tadjer
, and
A.
Kuramata
,
ECS J. Solid State Sci. Technol.
8
,
Q3159
(
2019
).
50.
M.
Ji
,
N. R.
Taylor
,
I.
Kravchenko
,
P.
Joshi
,
T.
Aytug
,
L. R.
Cao
, and
M. P.
Paranthaman
,
IEEE Trans. Power Electron.
36
,
41
(
2021
).
51.
Hehe
Gong
,
Feng
Zhou
,
Xinxin
Yu
,
Weizong
Xu
,
Fang-Fang
Ren
,
Shulin
Gu
,
Hai
Lu
,
Jiandong
Ye
, and
Rong
Zhang
,
IEEE Electron Device Lett.
43
,
773
(
2022
).
52.
Zahabul
Islam
,
Aman
Haque
,
Nicholas
Glavin
,
Minghan
Xian
,
Fan
Ren
,
Alexander Y.
Polyakov
,
Anastasia
Kochkova
,
Marko
Tadjer
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
9
,
055008
(
2020
).
53.
Z.
Islam
,
M.
Xian
,
A.
Haque
,
F.
Ren
,
M.
Tadjer
, and
S. J.
Pearton
,
IEEE Trans. Electron Devices
67
,
3056
(
2020
).
54.
Rujun
Sun
,
Andrew R.
Balog
,
Haobo
Yang
,
Nasim
Alem
, and
Michael A.
Scarpulla
,
IEEE Electron Device Lett.
44, 725 (
2023
).
55.
B.
Wang
,
Ming
Xiao
,
Zichen
Zhang
,
Yifan
Wang
,
Yuan
Qin
,
Qihao
Song
,
Guo-Quan
Lu
,
Khai
Ngo
, and
Yuhao
Zhang
,
IEEE Trans. Electron Devices
70
,
633
(
2023
).
56.
H.
Gong
,
F.
Zhou
,
X.
Yu
,
W.
Xu
,
F.
Ren
,
S.
Gu
,
H.
Lu
,
J.
Ye
, and
R.
Zhang
,
IEEE Electron Device Lett.
43
,
773
(
2022
).
57.
F.
Otsuka
,
H.
Miyamoto
,
A.
Takatsuka
,
S.
Kunori
,
K.
Sasaki
, and
A.
Kuramata
,
Appl. Phys. Express
15
,
016501
(
2022
).
58.
Jiancheng
Yang
et al,
Appl. Phys. Lett.
114
,
232106
(
2019
).
59.
Xinyi Xia, Jian-Sian Li, Chao-Ching Chiang, Fan Ren, and Stephen J. Pearton,
ECS Trans.
111, 103 (2023).
60.
Y.
Lv
et al,
IEEE Trans. Power Electron.
36
,
6179
(
2021
).
61.
J.
Wei
,
Y.
Wei
,
J.
Lu
,
X.
Peng
,
Z.
Jiang
,
K.
Yang
, and
X.
Luo
,
2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD)
Toronto, Canada. May 2022 (
IEEE
, New York,
2022
), pp.
97
100
.
62.
W.
Hao
et al,
IEEE Trans. Electron Devices
70
,
2129
(
2023
).
63.
J.-S.
Li
,
C.-C.
Chiang
,
X.
Xia
,
C.-T.
Tsai
,
F.
Ren
,
Y.-T.
Liao
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Techol.
11
,
105003
(
2022
).
64.
Sayleap
Sdoeung
,
Kohei
Sasaki
,
Katsumi
Kawasaki
,
Jun
Hirabayashi
,
Akito
Kuramata
, and
Makoto
Kasu
,
Jpn. J. Appl. Phys.
62
,
SF1001
(
2023
).
65.
B.
Wang
,
Ming
Xiao
,
Jack
Knoll
,
Cyril
Buttay
,
Kohei
Sasaki
,
Christina
Dimarino
, and
Yuhao
Zhang
,
IEEE Electron Device Lett.
42
,
1132
(
2021
).
66.
Jian Sian
Li
,
Chao Ching
Chiang
,
Xinyi
Xia
,
Hsia Hsuan
Wan
,
Fan
Ren
, and
S. J.
Pearton
, “
Superior high temperature performance of 8 kV NiO/Ga2O3 vertical heterojunction rectifiers
,”
J. Mater. Chem. C
(to be published) (
2023
).
You do not currently have access to this content.