This paper addresses the challenges of fitting asymmetric photoelectron peaks by showing that the use of the double Lorentzian (DL) line shape usually leads to high-quality, reliable, and reproducible fits. In contrast to the Doniach-Sunjic (DS) line shape, used to fit asymmetric peaks, the DL distribution is integrable and produces higher-quality fits. The functional form of the DL is described in detail; examples of the application of the DS line shape to fit transition metals and one transition metal oxide are shown. The transition from symmetric Voigt functions, used to fit many photoelectron peaks, to asymmetric DL functions is smooth and easy. The DL is encompassed in the freely available AAnalyzer software (https://xpsoasis.org/download). By using the DL, the number of free peak parameters reduces notably, thereby improving the stability of the fitting process, reducing the uncertainties of peak parameters, and improving the reproducibility of results from different operators.

1.
F.
de Groot
and
A.
Kotani
,
Core Level Spectroscopy of Solids
,
1st ed.
(
CRC
,
Boca Raton, FL
,
2008
).
2.
A.
Herrera-Gomez
, see http://www.qro.cinvestav.mx/∼aherrera/reportesInternos/formalExpressionXPSIntensity.pdf for “A formal expression for the photoemission signal and the angular transmission function,” Internal Report Cinvestav-Queretaro (2020).
3.
D.
Briggs
and
M.
Seah
,
Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy
(
John Wiley & Sons, Ltd.
,
Chechester
,
1983
).
4.
S.
Doniach
and
M.
Šunjic
,
J. Phys. Part C Solid
3
,
285
(
1970
).
5.
A.
Herrera-Gomez
, see http://www.qro.cinvestav.mx/∼aherrera/reportesInternos/doubleLorentzian.pdf for “A double Lorentzian shape for asymmetric photoelectron peaks,” Internal Report Cinvestav-Queretaro (2011).
6.
G. H.
Major
et al,
Surf. Interface Anal.
53
,
689
(
2021
).
7.
B. V.
Crist
,
J. Electron Spectrosc. Relat. Phenom.
248
,
147046
(
2021
).
8.
G. H.
Major
,
N.
Fairley
,
P. M. A.
Sherwood
,
M. R.
Linford
,
J.
Terry
,
V.
Fernandez
, and
K.
Artyushkova
,
J. Vac. Sci. Technol. A
38
,
061203
(
2020
).
9.
A.
Herrera-Gomez
, see http://www.qro.cinvestav.mx/∼aherrera/reportesInternos/SimultaneousFitting.pdf for “Simultaneous data fitting in ARXPS,” Internal Report Cinvestav-Queretaro (2008).
10.
J.
Muñoz-Flores
and
A.
Herrera-Gomez
,
J. Electron. Spectrosc.
184
,
533
(
2012
).
11.
A.
Herrera-Gomez
,
O.
Cortazar-Martínez
,
J. F.
Fabian-Jocobi
,
A.
Carmona-Carmona
,
J. G.
Raboño-Borbolla
,
M.
Bravo-Sanchez
, and
J. A.
Huerta-Ruelas
,
Surf. Interface Anal.
52
,
591
(
2020
).
12.
D.
Brigss
and
J. C.
Riviere
,
Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy
,
1st ed.
(
John Wiley & Sons
,
London
,
1983
).
13.
D.
Cabrera-German
,
G.
Molar-Velázquez
,
G.
Gomez-Sosa
,
W.
de la Cruz
, and
A.
Herrera-Gomez
,
Surf. Interface Anal.
49
,
1078
(
2017
).
14.
M.
Bravo Sanchez
,
J. A. A.
Huerta-Ruelas
,
D.
Cabrera-German
, and
A.
Herrera-Gomez
,
Surf. Interface Anal.
49
,
253
(
2017
).
15.
D. M.
Guzman-Bucio
,
G.
Gomez-Sosa
,
D.
Cabrera-German
,
J. A.
Torres-Ochoa
,
M.
Bravo-Sanchez
,
O.
Cortazar-Martinez
,
A. J.
Carmona-Carmona
, and
A.
Herrera-Gomez
,
J. Electron. Spectrosc.
262
,
147284
(
2023
).
16.
D.
Cabrera-German
,
G.
Gomez-Sosa
, and
A.
Herrera-Gomez
,
Surf. Interface Anal.
48
,
252
(
2016
).
17.
J. A.
Torres-Ochoa
,
D.
Cabrera-German
,
O.
Cortazar-Martinez
,
M.
Bravo-Sanchez
,
G.
Gomez-Sosa
, and
A.
Herrera-Gomez
,
Appl. Surf. Sci.
622
,
156960
(
2023
).
18.
T.
Fujii
,
F. M. F.
de Groot
,
G.
a Sawatzky
,
F. C.
Voogt
,
T.
Hibma
, and
K.
Okada
,
Phys. Rev. B
59
,
3195
(
1999
).
19.
D.
Cabrera-German
,
G.
Molar-Velázquez
,
G.
Gómez-Sosa
,
W.
de la Cruz
, and
A.
Herrera-Gomez
,
Surf. Interface Anal.
49
,
1078
(
2017
).
20.
G.
Beamson
and
D.
Briggs
,
High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database
(
John Wiley & Sons
, Chichester,
1992
).
21.
J. E.
Castle
,
H.
Chapman-Kpodo
,
A.
Proctor
, and
A. M.
Salvi
,
J Electron Spectrosc
106
,
65
(
2000
).
22.
A.
Herrera-Gomez
, see https://xpsoasis.org/aanalyzer_manual for “AAnalyzer®, a software for XPS-data peak-fitting,” (2000).
23.
W.
Kern
and
D. A.
Puotinen
,
RCA Rev.
31
, 186 (
1970
).
24.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C: The Art of Scientific Computing
,
2nd ed.
(
Cambridge University
, Cambridge,
1989
), p.
415
.
25.
A.
Herrera-Gomez
,
M.
Bravo-Sanchez
,
O.
Ceballos-Sanchez
, and
M. O. O.
Vazquez-Lepe
,
Surf. Interface Anal.
46
,
897
(
2014
).
26.
A.
Herrera-Gomez
,
M.
Bravo-Sanchez
,
F.-S.
Aguirre-Tostado
, and
M.-O.
Vazquez-Lepe
,
J. Electron. Spectrosc.
189
,
76
(
2013
).
27.
M. I.
Medina-Montes
,
M. V.
Selvidge
,
A.
Herrera-Gomez
,
F. S.
Aguirre-Tostado
,
M. A.
Quevedo-Lopez
, and
R. M.
Wallace
,
J. Appl. Phys.
106
,
053506
(
2009
).
28.
A.
Herrera-Gomez
,
F. S.
Aguirre-Tostado
,
M. A.
Quevedo-Lopez
,
P. D.
Kirsch
,
M. J.
Kim
, and
R. M.
Wallace
,
J. Appl. Phys.
104
,
103520
(
2008
).
29.
A.
Herrera-Gomez
,
J. Vac. Sci. Technol. A
38
,
033211
(
2020
).
30.
A.
Herrera-Gomez
et al,
Surf. Interface Anal.
50
,
246
(
2018
).
31.
D.
Shirley
,
Phys. Rev. B
5
,
4709
(
1972
).
32.
A.
Proctor
and
P.
Sherwood
,
Anal. Chem.
54
,
13
(
1982
).
33.
S.
Tougaard
and
P.
Sigmund
,
Phys. Rev. B
25
,
4452
(
1982
).
35.
A.
Herrera-Gomez
, see http://www.qro.cinvestav.mx/∼aherrera/reportesInternos/inelastic_background_thin_film.pdf for “The photoemission background signal due to inelastic scattering in conformal thin layers,” Internal Report Cinvestav-Queretaro (2019).
36.
O.
Cortazar-Martínez
,
J.-A.
Torres-Ochoa
,
J.-G.
Raboño-Borbolla
, and
A.
Herrera-Gomez
,
Appl. Surf. Sci.
542
,
148636
(
2021
).
37.
A.
Herrera-Gomes
,
D.
Herrera-Rendon
,
E.
Aguilar-Diaz
, and
O.
Moya-Perez
, see https://xpsoasis.org/ for “XPSOasis, the peak-fitting network platform” (2022).
38.
J. H.
Scofield
,
J. Electron. Spectrosc.
8
,
129
(
1976
).
You do not currently have access to this content.