Herein, we describe a new flexible atmospheric pressure plasma jet device composed of hollow-core optical fibers and introduce two potential applications of the device: endoscopic plasma treatment and decomposition of aqueous phosphorus compounds. The proposed device is 1.6 m long and highly flexible, has a small probe size of several hundred micrometers, and spatially separates the plasma jet from the electrical input, making it very suitable for treatment through the biopsy channel of a conventional endoscope. Because the wire electrode of the fabricated atmospheric pressure plasma jet device is thoroughly isolated inside the hollow of the optical fiber, the device produces a plasma column in an identical discharge state regardless of external environmental conditions. As a result, the device can operate safely and steadily in highly humid environments, such as underwater, which can be utilized to decompose phosphorus compounds in fresh water.

1.
K. H.
Becker
,
K. H.
Schoenbach
, and
J. G.
Eden
,
J. Phys. D: Appl. Phys.
39
,
R55
(
2006
).
2.
A.
Fridman
,
A.
Chirokov
, and
A.
Gutsol
,
J. Phys. D: Appl. Phys.
38
,
R1
(
2005
).
3.
A.
Schutze
,
J. Y.
Jeong
,
S. E.
Babayan
,
J.
Park
,
G. S.
Selwyn
, and
R. F.
Hicks
,
IEEE Trans. Plasma Sci.
26
,
1685
(
1998
).
4.
M.
Laroussi
and
T.
Akan
,
Plasma Process. Polym.
4
,
777
(
2007
).
5.
C.
Tendero
,
C.
Tixier
,
P.
Tristant
,
J.
Desmaison
, and
P.
Leprince
,
Spectrochim. Acta B
61
,
2
(
2006
).
6.
S.
Bhatt
,
J.
Pulpytel
, and
F.
Arefi-Khonsari
,
Surf. Innovations
3
,
63
(
2015
).
7.
O. V.
Penkov
,
M.
Khadem
,
W.-S.
Lim
, and
D.-E.
Kim
,
J. Coat. Technol. Res.
12
,
225
(
2015
).
8.
H. J.
Jang
,
E. Y.
Jung
,
T.
Parsons
,
H.-S.
Tae
, and
C.-S.
Park
,
Polymers
13
,
2267
(
2021
).
9.
A. L.
Garner
and
T. A.
Mehlhorn
,
Front. Phys.
9
,
786381
(
2021
).
10.
V.
Jalaber
,
D.
Del Frari
,
J.
De Winter
,
K.
Mehennaoui
,
S.
Planchon
,
P.
Choquet
,
C.
Detrembleur
, and
M.
Moreno-Couranjou
,
Front. Chem.
7
,
183
(
2019
).
11.
F.
Lisco
,
A.
Shaw
,
A.
Wright
,
J. M.
Walls
, and
F.
Iza
,
Sol. Energy
146
,
287
(
2017
).
12.
O.
Galmiz
,
Z. K.
Tucekova
,
J.
Kelar
,
M.
Zemanek
,
M.
Stupavska
,
D.
Kovacik
, and
M.
Cernak
,
AIP Adv.
9
,
105013
(
2019
).
13.
C.
Jiang
,
A.-A. H.
Mohamed
,
R. H.
Stark
,
J. H.
Yuan
, and
K. H.
Schoenbach
,
IEEE Trans. Plasma Sci.
33
,
1416
(
2005
).
14.
J. L.
Walsh
and
M. G.
Kong
,
Appl. Phys. Lett.
91
,
221502
(
2007
).
15.
Q.
Xiong
,
X. P.
Lu
,
Z. H.
Jiang
,
Z. Y.
Tang
,
J.
Hu
,
Z. L.
Xiong
, and
Y.
Pan
,
IEEE Trans. Plasma Sci.
36
,
986
(
2008
).
16.
H. S.
Park
,
S. J.
Kim
,
H. M.
Joh
,
T. H.
Chung
,
S. H.
Bae
, and
S. H.
Leem
,
Phys. Plasmas
17
,
033502
(
2010
).
17.
K.
Barman
,
M.
Mudgal
,
R.
Rane
, and
S.
Bhattacharjee
,
Phys. Plasmas
28
,
123503
(
2021
).
18.
J. Y.
Kim
,
S.-O.
Kim
,
Y.
Wei
, and
J.
Li
,
Appl. Phys. Lett.
96
,
203701
(
2010
).
19.
X.
Zuo
,
Y.
Wei
,
L. W.
Chen
, and
Y. D.
Meng
,
Phys. Plasmas
20
,
083507
(
2013
).
20.
E.
Robert
,
E.
Barbosa
,
S.
Dozias
,
M.
Vandamme
,
C.
Cachoncinlle
,
R.
Viladrosa
, and
J. M.
Pouvesle
,
Plasma Process. Polym.
6
,
795
(
2009
).
21.
E.
Robert
et al,
Clin. Plasma Med.
1
,
8
(
2013
).
22.
H. S.
Uhm
and
Y. C.
Hong
,
Thin Solid Films
519
,
6974
(
2011
).
23.
I.
Onyshchenko
,
N.
De Geyter
, and
A. Y.
Nikiforov
, and
R.
Morent
,
Plasma Process. Polym.
12
,
271
(
2015
).
24.
F.
Clément
,
P.
Svarnas
,
L.
Marlin
,
A.
Gkelios
, and
B.
Held
,
IEEE Trans. Plasma Sci.
39
,
2364
(
2011
).
25.
I.
Schweigert
,
D.
Zakrevsky
,
P.
Gugin
,
E.
Yelak
,
E.
Golubitskaya
,
O.
Troitskaya
, and
O.
Koval
,
Appl. Sci.
9
,
4528
(
2019
).
26.
O.
Bastin
,
M.
Thulliez
,
J.
Servais
,
A.
Nonclercq
,
A.
Delchambre
,
A.
Hadefi
,
J.
Devière
, and
F.
Reniers
,
Plasma Med.
10
,
71
(
2020
).
27.
O.
Bastin
,
M.
Thulliez
,
A.
Delchambre
,
J.
Devière
,
F.
Reniers
, and
A.
Nonclercq
,
J. Phys. D: Appl. Phys.
55
,
415204
(
2022
).
28.
M.
Thulliez
,
O.
Bastin
,
A.
Remy
,
A.
Nonclercq
,
J.
Devière
,
A.
Delchambre
, and
F.
Reniers
,
J. Phys. D: Appl. Phys.
55
,
415202
(
2022
).
29.
K. G.
Kostov
,
T. M. C.
Nishime
,
M.
Machida
,
A. C.
Borges
,
V.
Prysiazhnyi
, and
C. Y.
Koga-Ito
,
Plasma Process. Polym.
12
,
1383
(
2015
).
30.
K. G.
Kostov
,
M.
Machida
,
V.
Prysiazhnyi
, and
R. Y.
Honda
,
Plasma Sources Sci. Technol.
24
,
025038
(
2015
).
31.
H.
Decauchy
,
A.
Pavy
,
M.
Camus
,
L.
Fouassier
, and
T.
Dufour
,
J. Phys. D: Appl. Phys.
55
,
455401
(
2022
).
32.
M.
Polak
,
J.
Winter
,
U.
Schnabel
,
J.
Ehlbeck
, and
K.-D.
Weltmann
,
Plasma Process. Polym.
9
,
67
(
2012
).
33.
T.
Wang
,
M. S.
Hu
,
B.
Yang
,
X. L.
Wang
,
X.
Chen
, and
J.-Q.
Liu
, in
2018 IEEE Micro Electro Mechanical Systems (MEMS)
,
Belfast, UK
, 21–25 January 2018 (IEEE, New York,
2018
), pp.
365
368
.
34.
T.
Wang
,
J.
Wang
,
S.
Wang
,
S.
Chen
,
X.
Wang
,
W.
Yang
,
M.
Li
, and
L.
Shi
,
J. Micromech. Microeng.
32
,
095006
(
2022
).
35.
J.
Winter
,
T. M. C.
Nishime
,
S.
Glitsch
,
H.
Lühder
, and
K.-D.
Weltmann
,
Contrib. Plasma Phys.
58
,
404
(
2018
).
36.
J.
Winter
,
T. M. C.
Nishime
,
R.
Bansemer
,
M.
Balazinski
,
K.
Wende
, and
K.-D.
Weltmann
,
J. Phys. D: Appl. Phys.
52
,
024005
(
2019
).
37.
J. Y.
Kim
,
J.
Ballato
,
P.
Foy
,
T.
Hawkins
,
Y.
Wei
,
J.
Li
, and
S.-O.
Kim
,
Small
6
,
1474
(
2010
).
38.
J. Y.
Kim
,
J.
Ballato
,
P.
Foy
,
T.
Hawkins
,
Y.
Wei
,
J.
Li
, and
S.-O.
Kim
,
IEEE Trans. Plasma Sci.
39
,
2974
(
2011
).
39.
40.
J.-Z.
Zhang
,
C. J.
Fischer
, and
P. B.
Ortner
,
Int. J. Environ. Anal. Chem.
80
,
61
(
2001
).
41.
S. M.
Budy
,
T.
Hawkins
,
P.
Foy
,
M. J.
Matthewson
,
D. W.
Smith
, Jr.
, and
J.
Ballato
,
J. Lightwave Technol.
27
,
5626
(
2009
).
42.
J.
Ballato
,
T.
Hawkins
,
P.
Foy
,
B.
Yazgan-Kokuoz
,
R.
Stolen
,
C.
McMillen
,
N. K.
Hon
,
B.
Jalali
, and
R.
Rice
,
Opt. Express
17
,
8029
(
2009
).
43.
Y.
Zhang
,
D.
Dai
,
W.
Ning
, and
L.
Li
,
AIP Adv.
8
,
095327
(
2018
).
44.
45.
J.-P.
Liang
,
Z.-L.
Zhao
,
X.-F.
Zhou
,
D.-Z.
Yang
,
H.
Yuan
,
W.-C.
Wang
, and
J.-J.
Qiao
,
Vacuum
181
,
109644
(
2020
).
46.
S.
Ma
,
K.
Kim
,
S.
Chun
,
S. Y.
Moon
, and
Y.
Hong
,
Chemosphere
243
,
125377
(
2020
).
47.
N.
Takeuchi
and
K.
Yasuoka
,
Jpn. J. Appl. Phys.
60
,
SA0801
(
2021
).
48.
N.
Sano
,
T.
Kawashima
,
J.
Fujikawa
,
T.
Fujimoto
,
T.
Kitai
,
T.
Kanki
, and
A.
Toyoda
,
Ind. Eng. Chem. Res.
41
,
5906
(
2002
).
49.
A.
Barjasteh
,
Z.
Dehghani
,
P.
Lamichhane
,
N.
Kaushik
,
E. H.
Choi
, and
N. K.
Kaushik
,
Appl. Sci.
11
,
3372
(
2021
).
50.
M.
Zhou
and
D. M.
Struve
,
Water Res.
38
,
3893
(
2004
).
51.
A.
Gross
and
C. E.
Boyd
,
J. World Aquac. Soc.
29
,
300
(
1998
).
52.
J.
Ma
,
Y.
Yuan
,
T.
Zhou
, and
D.
Yuan
,
Limnol. Oceanogr. Methods
15
,
372
(
2017
).
You do not currently have access to this content.