Electrons can enhance SiO2 atomic layer deposition (ALD) at low temperatures using disilane (Si2H6) and either ozone (O3/O2) or water (H2O) as reactants. SiO2 electron-enhanced ALD (EE-ALD) was demonstrated at 35 °C by exposing the sample to sequential electron, oxygen reactant, and Si2H6 exposures. The reaction sequence was electron beam exposure for 3 s, purge for 5 s, O3/O2 or H2O exposure at 0.5–1.0 Torr for 3 s, purge for 10 s, Si2H6 exposure at 100 mTorr for 1 s, and purge for 15 s. The electron exposure was an electron current of ∼150 mA for 3 s. The electrons were produced by a hollow cathode plasma electron source typically operating with a grid bias of ≈−300 V. These electrons could irradiate a sample area of ∼2 × 2 cm2. In situ spectroscopic ellipsometry measurements determined that SiO2 EE-ALD films nucleated rapidly and deposited linearly versus number of EE-ALD cycles. The SiO2 EE-ALD growth rate was 0.89 Å/cycle using O3/O2 and 0.88 Å/cycle using H2O. The SiO2 growth rate was also self-limiting at higher electron and Si2H6 exposures. In addition, SiO2 EE-ALD films were grown by changing the reaction sequence or codosing the electrons with the oxygen reactant. The SiO2 EE-ALD films could be grown on conducting silicon wafers or insulating SiO2 films. SiO2 EE-ALD is believed to be possible on insulating SiO2 films because the secondary electron yield for SiO2 at electron energies of ∼100–300 eV is greater than unity. Under these conditions, the SiO2 film charges positive during electron exposure and then pulls back secondary electrons to maintain charge neutrality. The SiO2 EE-ALD films had properties that were comparable with thermal SiO2 oxides. The refractive indices of the SiO2 EE-ALD films were similar at n = 1.44 ± 0.02 for various process conditions and equivalent to the refractive index of a wet thermal SiO2 oxide film. In addition, all the SiO2 EE-ALD films yielded etch rates in dilute buffered oxide etch solution that were only slightly higher than the etch rate of a thermal SiO2 oxide film. SiO2 EE-ALD should be useful to deposit high-quality SiO2 films for various applications at low temperatures.

1.
R. D.
Ramsier
and
J. T.
Yates
,
Surf. Sci. Rep.
12
,
246
(
1991
).
2.
F.
Bozso
and
P.
Avouris
,
Phys. Rev. B
38
,
3943
(
1988
).
3.
L. R.
Thompson
,
J. J.
Rocca
,
K.
Emery
,
P. K.
Boyer
, and
G. J.
Collins
,
Appl. Phys. Lett.
43
,
777
(
1983
).
4.
I.
Utke
,
P.
Hoffmann
, and
J.
Melngailis
,
J. Vac. Sci. Technol. B
26
,
1197
(
2008
).
5.
W. F.
van Dorp
and
C. W.
Hagen
,
J. Appl. Phys.
104
,
081301
(
2008
).
6.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
29
,
050801
(
2011
).
7.
J. K.
Sprenger
,
A. S.
Cavanagh
,
H.
Sun
,
K. J.
Wahl
,
A.
Roshko
, and
S. M.
George
,
Chem. Mater.
28
,
5282
(
2016
).
8.
J. K.
Sprenger
,
H.
Sun
,
A. S.
Cavanagh
, and
S. M.
George
,
J. Vac. Sci. Technol. A
36
,
01A118
(
2017
).
9.
J. K.
Sprenger
,
H.
Sun
,
A. S.
Cavanagh
,
A.
Roshko
,
P. T.
Blanchard
, and
S. M.
George
,
J. Phys. Chem. C
122
,
9455
(
2018
).
10.
Z. C.
Sobell
,
A. S.
Cavanagh
, and
S. M.
George
,
J. Vac. Sci. Technol. A
37
,
060906
(
2019
).
11.
Z. C.
Sobell
,
A. S.
Cavanagh
,
D. R.
Boris
,
S. G.
Walton
, and
S. M.
George
,
J. Vac. Sci. Technol. A
39
,
042403
(
2021
).
12.
Z. C.
Sobell
and
S. M.
George
,
Chem. Mater.
34
,
9624
(
2022
).
13.
J. W.
Klaus
,
A. W.
Ott
,
J. M.
Johnson
, and
S. M.
George
,
Appl. Phys. Lett.
70
,
1092
(
1997
).
14.
O.
Sneh
,
M. L.
Wise
,
A. W.
Ott
,
L. A.
Okada
, and
S. M.
George
,
Surf. Sci.
334
,
135
(
1995
).
15.
B. B.
Burton
,
S. W.
Kang
,
S. W.
Rhee
, and
S. M.
George
,
J. Phys. Chem. C
113
,
8249
(
2009
).
16.
Y.
Du
,
X.
Du
, and
S. M.
George
,
Thin Solid Films
491
,
43
(
2005
).
17.
J. W.
Klaus
and
S. M.
George
,
Surf. Sci.
447
,
81
(
2000
).
18.
J. W.
Klaus
,
O.
Sneh
, and
S. M.
George
,
Science
278
,
1934
(
1997
).
19.
G.
Dingemans
,
C. A. A.
van Helvoirt
,
D.
Pierreux
,
W.
Keuning
, and
W. M. M.
Kessels
,
J. Electrochem. Soc.
159
,
H277
(
2012
).
20.
S. E.
Potts
,
H. B.
Profijt
,
R.
Roelofs
, and
W. M. M.
Kessels
,
Chem. Vap. Deposition
19
,
125
(
2013
).
21.
M.
Putkonen
et al,
Thin Solid Films
558
,
93
(
2014
).
22.
J. W.
Klaus
and
S. M.
George
,
J. Electrochem. Soc.
147
,
2658
(
2000
).
23.
S. C.
Deshmukh
and
E. S.
Aydil
,
Appl. Phys. Lett.
65
,
3185
(
1994
).
24.
G.
Lucovsky
,
P. D.
Richard
,
D. V.
Tsu
,
S. Y.
Lin
, and
R. J.
Markunas
,
J. Vac. Sci. Technol. A
4
,
681
(
1986
).
25.
C.
Martinet
,
V.
Paillard
,
A.
Gagnaire
, and
J.
Joseph
,
J. Non-Cryst. Solids
216
,
77
(
1997
).
26.
K.
Nakano
,
T.
Horie
, and
H.
Sakamoto
,
Jpn. J. Appl. Phys., Part 1
35
,
6570
(
1996
).
27.
M.
Junige
and
S. M.
George
,
J. Vac. Sci. Technol. A
39
,
023204
(
2021
).
28.
D. H.
Kim
,
G. H.
Lee
,
S. Y.
Lee
, and
D. H.
Kim
,
J. Cryst. Growth
286
,
71
(
2006
).
29.
P. C.
Cosby
,
J. Chem. Phys.
98
,
9560
(
1993
).
30.
M. Y.
Song
,
H.
Cho
,
G. P.
Karwasz
,
V.
Kokoouline
,
Y.
Nakamura
,
J.
Tennyson
,
A.
Faure
,
N. J.
Mason
, and
Y.
Itikawa
,
J. Phys. Chem. Ref. Data
50
,
023103
(
2021
).
31.
E.
Krishnakumar
and
S. K.
Srivastava
,
Int. J. Mass Spectrom. Ion Process.
113
,
1
(
1992
).
32.
H. J.
Hopman
,
H.
Alberda
,
I.
Attema
,
H.
Zeijlemaker
, and
J.
Verhoeven
,
J. Electron. Spectrosc. Relat. Phenom.
131
,
51
(
2003
).
33.
J.
Cazaux
and
P.
Lehuede
,
J. Electron. Spectrosc. Relat. Phenom.
59
,
49
(
1992
).
34.
G. F.
Dionne
,
J. Appl. Phys.
46
,
3347
(
1975
).
35.
J. J.
Fijol
,
A. M.
Then
,
G. W.
Tasker
, and
R. J.
Soave
,
Appl. Surf. Sci.
48–49
,
464
(
1991
).
36.
R. R.
Kunz
and
T. M.
Mayer
,
J. Vac. Sci. Technol. B
5
,
427
(
1987
).
You do not currently have access to this content.