Although it has long been known that metal-containing compounds can serve as catalysts for chemical vapor deposition (CVD) of films from other precursors, we show that metal-containing compounds can also inhibit CVD nucleation or growth. For two precursors A and B with growth onset temperatures TgA < TgB when used independently, it is possible that B can inhibit growth from A when the two precursors are coflowed onto a substrate at a temperature (T) where TgA < T < TgB. Here, we consider three precursors: AlH3⋅NMe3 (Tg = 130 °C, Me = CH3), Hf(BH4)4 (Tg = 170 °C), and AlMe3 (Tg = 300 °C). We find that (i) nucleation of Al from AlH3⋅NMe3 is inhibited by Hf(BH4)4 at 150 °C on two oxide surfaces (Si with native oxide and borosilicate glass), (ii) nucleation and growth of HfB2 is inhibited by AlMe3 at 250 °C on native oxide substrates and on HfB2 nuclei, and (iii) nucleation of Al from AlH3⋅NMe3 is inhibited by AlMe3 at 200 °C on native oxide substrates. Inhibition by Hf(BH4)4 is transient and persists only as long as its coflow is maintained; in contrast, AlMe3 inhibition of HfB2 growth is more permanent and continues after coflow is halted. As a result of nucleation inhibition, AlMe3 coflow enhances selectivity for HfB2 deposition on Au (growth) over Al2O3 (nongrowth) surfaces, and Hf(BH4)4 coflow makes it possible to deposit Al on Al nuclei and not on the surrounding oxide substrate. We propose the following criteria to identify candidate molecules for other precursor–inhibitor combinations: (i) the potential inhibitor should have a higher Tg than the desired film precursor, (ii) the potential inhibitor should be unreactive toward the desired film precursor, and (iii) at the desired growth temperature, the potential inhibitor should adsorb strongly enough to form a saturated monolayer on the intended nongrowth surface at accessible inhibitor pressures.

1.
J.
Yarbrough
,
A. B.
Shearer
, and
S. F.
Bent
,
J. Vac. Sci. Technol. A
39
,
021002
(
2021
).
2.
G. N.
Parsons
and
R. D.
Clark
,
Chem. Mater.
32
,
4920
(
2020
).
3.
G. N.
Parsons
,
J. Vac. Sci. Technol. A
37
,
020911
(
2019
).
4.
C.
Nender
,
I. V.
Karardjiev
,
A. M.
Barklund
,
S.
Berg
, and
P.
Carlsson
,
Thin Solid Films
228
,
87
(
1993
).
5.
W. L.
Gladfelter
,
Chem. Mater.
5
,
1372
(
1993
).
6.
Y. J.
Lee
and
S.-W.
Kang
,
Electrochem. Solid State Lett.
5
,
C91
(
2002
).
7.
D.
Choudhury
et al,
J. Vac. Sci. Technol. A
38
,
042407
(
2020
).
8.
D.
Bobb-Semple
,
K. L.
Nardi
,
N.
Draeger
,
D. M.
Hausmann
, and
S. F.
Bent
,
Chem. Mater.
31
,
1635
(
2019
).
9.
F. S. M.
Hashemi
,
C.
Prasittichai
, and
S. F.
Bent
,
J. Phys. Chem. C
118
,
10957
(
2014
).
10.
J.
Bould
,
J.
Machacek
,
M. G. S.
Londesborough
,
R.
Macias
,
J. D.
Kennedy
,
Z.
Bastl
,
P.
Rupper
, and
T.
Base
,
Inorg. Chem.
51
,
1685
(
2012
).
11.
N. L.
Jeon
,
W.
Lin
,
M. K.
Erhardt
,
G. S.
Girolami
, and
R. G.
Nuzzo
,
Langmuir
13
,
3833
(
1997
).
12.
M. J. M.
Merkx
,
T. E.
Sandoval
,
D. M.
Hausmann
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
Chem. Mater.
32
,
3335
(
2020
).
13.
T. K.
Talukdar
,
G. S.
Girolami
, and
J. R.
Abelson
,
J. Vac. Sci. Technol. A
37
,
021509
(
2019
).
14.
A.
Yanguas-Gil
,
J. A.
Libera
, and
J. W.
Elam
,
Chem. Mater.
25
,
4849
(
2013
).
15.
E.
Mohimi
,
Z. V.
Zhang
,
S.
Liu
,
J. L.
Mallek
,
G. S.
Girolami
, and
J. R.
Abelson
,
J. Vac. Sci. Technol. A
36
,
041507
(
2018
).
16.
Z. V.
Zhang
,
S.
Liu
,
G. S.
Girolami
, and
J. R.
Abelson
,
J. Vac. Sci. Technol. A
39
,
023415
(
2021
).
17.
R.
Khan
et al,
Chem. Mater.
30
,
7603
(
2018
).
18.
J.
Soethoudt
,
Y.
Tomczak
,
B.
Meynaerts
,
B. T.
Chan
, and
A.
Delabie
,
J. Phys. Chem. C
124
,
7163
(
2020
).
19.
J.
Soethoudt
,
S.
Crahaij
,
T.
Conard
, and
A.
Delabie
,
J. Mater. Chem. C
7
,
11911
(
2019
).
20.
Z.
Xue
,
H.
Thridandam
,
H. D.
Kaesz
, and
R. F.
Hicks
,
Chem. Mater.
4
,
162
(
1992
).
21.
D. P.
Adams
,
L. L.
Tedder
,
T. M.
Mayer
,
B. S.
Swartzentruber
, and
E.
Chason
,
Phys. Rev. Lett.
74
,
5088
(
1995
).
22.
M.
Hiratani
,
T.
Nabatame
,
Y.
Matsui
,
K.
Imagawa
, and
S.
Kimura
,
J. Electrochem. Soc.
148
,
C524
(
2001
).
23.
W. L.
Gladfelter
,
D. C.
Boyd
, and
K. F.
Jensen
,
Chem. Mater.
1
,
339
(
1989
).
24.
M. J.
Cooke
,
R. A.
Heinecke
,
R. C.
Stern
, and
J. W.
Maes
,
Solid State Technol.
25
,
62
(
1982
).
25.
R.
Phillips
and
E.
Eisenbraun
,
ECS Trans.
35
,
27
(
2011
).
26.
L.-Y.
Chen
,
M.
Naik
,
T.
Guo
, and
R. C.
Mosely
, U.S. patent 6,139,905 (11 April 1997).
27.
C. T.
Nguyen
et al,
Nat. Commun.
13
,
7597
(
2022
).
28.
D. B.
Beach
,
S. E.
Blum
, and
F. K.
LeGoues
,
J. Vac. Sci. Technol. A
7
,
3117
(
1989
).
29.
S.
Jayaraman
,
Y.
Yang
,
D. Y.
Kim
,
G. S.
Girolami
, and
J. R.
Abelson
,
J. Vac. Sci. Technol. A
23
,
1619
(
2005
).
30.
Y.
Yang
,
S.
Jayaraman
,
D. Y.
Kim
,
G. S.
Girolami
, and
J. R.
Abelson
,
Chem. Mater.
18
,
5088
(
2006
).
31.
T. T.
Kodas
and
M. J.
Hampden-Smith
,
The Chemistry of Metal CVD
(
VCH Inc.
,
New York
,
1994
).
32.
A. L.
Wayda
,
L. F.
Schneemeyer
, and
R. L.
Opila
,
Appl. Phys. Lett.
53
,
361
(
1988
).
33.
K. B.
Borisenko
,
A. J.
Downs
,
H. E.
Robertson
,
D. W. H.
Rankin
, and
C. Y.
Tang
,
Dalton Trans.
2004
,
967
(
2004
).
34.
K. L.
Canova
,
Z. V.
Zhang
,
G. S.
Girolami
, and
J. R.
Abelson
,
J. Vac. Sci. Technol. A
39
,
013402
(
2021
).
35.
A. N.
Cloud
, “
Ultraconformal chemical vapor deposition and synthesis of transition metal nitride films
,”
Ph.D. thesis
(
University of Illinois at Urbana-Champaign
,
2013
).
36.
K. L.
Canova
, “
Growth kinetics and microstructure in two precursor chemical vapor deposition of borides
,”
Ph.D. thesis
(
University of Illinois Urbana-Champaign
,
2022
).
37.
C. J.
Taylor
,
D. C.
Gilmer
,
D. G.
Colombo
,
G. D.
Wilk
,
S. A.
Campbell
,
J.
Roberts
, and
W. L.
Gladfelter
,
J. Am. Chem. Soc.
121
,
5220
(
1999
).
38.
C. A.
Jaska
,
T. J.
Clark
,
S. B.
Clendenning
,
D.
Grozea
,
A.
Turak
,
Z.-H.
Lu
, and
I.
Manners
,
J. Am. Chem. Soc.
127
,
5116
(
2005
).
39.
M.
Söderlund
,
P.
Mäki-Arvela
,
K.
Eränen
,
T.
Salmi
,
R.
Rahkola
, and
D. Y.
Murzin
,
Catal. Lett.
105
,
191
(
2005
).
40.
P.
Boryło
,
K.
Lukaszkowicz
,
M.
Szindler
,
J.
Kubacki
,
K.
Balin
,
M.
Basiaga
, and
J.
Szewczenko
,
Vacuum
131
,
319
(
2016
).
41.
M.
Juppo
,
A.
Rahtu
,
M.
Ritala
, and
M.
Leskelä
,
Langmuir
16
,
4034
(
2000
).
42.
J. S.
Lee
,
T.
Kaufman-Osborn
,
W.
Melitz
,
S.
Lee
,
A.
Delabie
,
S.
Sioncke
,
M.
Caymax
,
G.
Pourtois
, and
A. C.
Kummel
,
J. Chem. Phys.
135
,
054705
(
2011
).
43.
Z.
Gao
, “
Nucleation and growth of atomic layer deposition: Effect of substrate and precursor chemistry
,”
Ph.D. thesis
(
Washington University
,
2018
).
44.
M.
Bonvalot
,
C.
Vallee
,
C.
Mannequin
,
M.
Jaffal
,
R.
Gassilloud
,
N.
Posseme
, and
T.
Chevolleau
,
Dalton Trans.
51
,
442
(
2022
).
45.
M. F. J.
Vos
,
S. N.
Chopra
,
M. A.
Verheijen
,
J. G.
Ekerdt
,
S.
Agarwal
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
Chem. Mater.
31
,
3878
(
2019
).
46.
B. R.
Rogers
,
Thin Solid Films
408
,
87
(
2002
).
47.
S.
Babar
,
N.
Kumar
,
P.
Zhang
,
J. R.
Abelson
,
A. C.
Dunbar
,
S. R.
Daly
, and
G. S.
Girolami
,
Chem. Mater.
25
,
662
(
2013
).
48.
J.-S.
Kim
and
G. N.
Parsons
,
Chem. Mater.
33
,
9221
(
2021
).
49.
H.
Saare
,
S. K.
Song
,
J.-S.
Kim
, and
G. N.
Parsons
,
J. Appl. Phys.
128
,
105302
(
2020
).
50.
G. N.
Parsons
,
B.
Kalanyan
,
S. E.
Atanasov
,
P.
Lemaire
, and
C.
Oldham
,
ECS Trans.
75
,
77
(
2016
).
51.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002413 for supporting materials referred to in the main text.

Supplementary Material

You do not currently have access to this content.