Monomer precursor flow was introduced at an oblique angle to the substrate at two locations during the initiated chemical vapor deposition (iCVD) process using a branched nozzle inlet extension. The polymerization of methacrylic acid was systematically studied as a function of the nozzle length and the monomer flow rate. Our experimental data showed the evolution of two distinct symmetrical thickness profiles as the flow rate and nozzle length increased. The maximum thickness moved downstream along the axes of both nozzles as the flow rate and nozzle length increased. Computational models were used to study the effects of the nozzle length and the monomer flow rate on the velocity profile within the reactor. Increasing the monomer flow rate and the nozzle length resulted in increases in the velocity profile ranges and the movement of the location of the maximum velocity and local minimum velocity associated with the stagnation point. These velocity data provided insight for explaining the trends found in the experimental results. The data demonstrate the ability to use a branched nozzle inlet extension to control the location of polymer deposition during the iCVD process.

1.
S. G.
Im
and
K. K.
Gleason
,
AIChE J.
57
,
276
(
2011
).
2.
S. H.
Baxamusa
and
K. K.
Gleason
,
Chem. Vapor Depos.
14
,
313
(
2008
).
3.
S. H.
Baxamusa
,
S. G.
Im
, and
K. K.
Gleason
,
Phys. Chem. Chem. Phys.
11
,
5227
(
2009
).
4.
P.
Kwong
and
M.
Gupta
,
Anal. Chem.
84
,
10129
(
2012
).
5.
C.
Cheng
and
M.
Gupta
,
Beilstein J. Nanotechnol.
8
,
1629
(
2017
).
6.
D.
Soto
,
A.
Ugur
,
T.A.
Farnham
,
K. K.
Gleason
and
K. K.
Varanasi
,
Adv. Funct. Mater.
28
,
1707355
(
2018
).
7.
P. D.
Haller
,
C. A.
Flowers
, and
M.
Gupta
,
Soft Matter
7
,
2428
(
2011
).
8.
G.
Dianat
,
K.
Gao
,
S.
Prevoir
, and
M.
Gupta
,
Appl. Polym. Mater.
2
,
3339
(
2020
).
9.
K. K. S.
Lau
and
K. K.
Gleason
,
Macromolecules
39
,
3688
(
2006
).
10.
G.
Ozaydin-Ince
and
K. K.
Gleason
,
J. Vac. Sci. Technol. A
27
,
1135
(
2009
).
11.
M.
Gupta
and
K. K.
Gleason
,
Langmuir
22
,
10047
(
2006
).
12.
K. K. S.
Lau
and
K. K.
Gleason
,
Macromolecules
39
,
3695
(
2006
).
13.
N. A.
Welchert
,
C.
Cheng
,
P.
Karandikar
, and
M.
Gupta
,
J. Vac. Sci. Technol. A
38
,
063405
(
2020
).
14.
E. M.
Benetti
,
M. K.
Gunnewiek
,
C. A.
van Blitterswijk
,
G. J.
Vancso
, and
L.
Moroni
,
J. Mater. Chem. B
4
,
4244
(
2016
).
15.
L.
Li
,
Y.
Zhu
,
B.
Li
, and
C.
Gao
,
Langmuir
24
,
13632
(
2008
).
16.
17.
M.
Luo
,
J. E.
Seppala
,
J. N. L.
Albert
,
R. L.
Lewis
III
,
N.
Mahadevapuram
,
G. E.
Stein
, and
T. H.
Epps
III
,
Macromolecules
46
,
1803
(
2013
).
18.
J. M.
Rathfon
,
R. W.
Cohn
,
A. J.
Crosby
,
J. R.
Rothstein
, and
G. N.
Tew
,
Macromolecules
44
,
5436
(
2011
).
19.
K. G.
Yager
,
B. C.
Berry
,
K.
Page
,
D.
Patton
,
A.
Karim
, and
E. J.
Amis
,
Soft Matter
5
,
622
(
2009
).
20.
K. E.
Roskov
,
T. H.
Epps
III
,
B. C.
Berry
,
S. D.
Hudson
,
M. S.
Tureau
, and
M. J.
Fasolka
,
J. Comb. Chem.
10
,
966
(
2008
).
21.
J. C.
Meredith
,
A. P.
Smith
,
A.
Karim
, and
E. J.
Amis
,
Macromolecules
33
,
9747
(
2000
).
22.
H.
Xin
and
W.
Li
,
Appl. Phys. Rev.
5
,
031105
(
2018
).
23.
B.
Huet
,
X.
Zhang
,
J. M.
Redwing
,
D. W.
Snyder
, and
J. P.
Raskin
,
2D Mater.
6
,
045032
(
2019
).
24.
W.
Kern
and
G. L.
Schinable
,
IEEE Trans. Electron Devices
26
,
647
(
1979
).
25.
D.
Dobkin
and
M. K.
Zuraw
,
Principles of Chemical Vapor Deposition
(
Springer Science & Business Media
, Netherlands,
2003
).
26.
D. M.
Gill
,
B. A.
Block
,
C. W.
Conrad
,
B. W.
Wessels
, and
S. T.
Ho
,
Appl. Phys. Lett.
69
,
2968
(
1996
).
27.
T. H.
Bointon
,
M. D.
Barnes
,
S.
Russo
, and
M. F.
Craciun
,
Adv. Mater.
27
,
4200
(
2015
).
28.
Y.
Wang
,
X.
Xu
,
J.
Lu
,
M.
Lin
,
Q.
Bao
,
B.
Ozyilmaz
, and
K. P.
Loh
,
ACS Nano.
4
,
6146
(
2010
).
29.
R.
Hawaldar
,
P.
Merino
,
M. R.
Correia
,
I.
Bdikin
,
J.
Gracio
,
J.
Mendez
,
J. A.
Martin-Gago
, and
M. K.
Singh
,
Sci. Rep.
2
,
682
(
2012
).
30.
M. R.
Wertheimer
,
J. E.
Klemberg-Sapieha
,
J.
Cerny
, and
S.
Liang
,
Plasmas Polym.
3
,
151
(
1998
).
31.
P.
Kovacik
,
G.
del Hierro
,
W.
Livernois
, and
K. K.
Gleason
,
Mater. Horiz.
2
,
221
(
2015
).
32.
M.
Gupta
and
K. K.
Gleason
,
Thin Solid Films
515
,
1579
(
2006
).
33.
C.
Cheng
and
M.
Gupta
,
Ind. Eng. Chem. Res.
57
,
11675
(
2018
).
34.
35.
N.
Cheimarios
,
E. D.
Koronaki
, and
A. G.
Boudouvis
,
Chem. Eng. J.
181–182
,
516
(
2012
).
36.
Y.
Cheng
,
A.
Khlyustova
,
P.
Chen
, and
R.
Yang
,
Macromolecules.
53, 10699 (2020).
37.
Crane Co.
, “Flow of fluids through valves, fittings and pipe,” Technical Paper No. 410 (TP 410), 1988.
38.
L. J.
Clancy
,
Aerodynamics
(
Pitman Publishing Limited
,
London
,
1979
).
39.
T. S.
O’Donovan
and
D. B.
Murray
,
Int. J. Heat Mass Transfer
51
,
6169
(
2008
).
40.
X.
Zhang
,
S.
Yarusevych
, and
S. D.
Peterson
,
Exp. Fluids
60
,
11
(
2019
).
41.
W. E.
Tenhaeff
and
K. K.
Gleason
,
Adv. Funct. Mater.
18
,
979
(
2008
).
43.
A. C.
Jones
and
M. L.
Hitchman
,
Chemical Vapour Deposition Precursors, Processes and Applications
(
Royal Society of Chemistry
,
Cambridge
,
2009
).
44.
D.
Dandy
and
J.
Yun
,
J. Mater. Res.
12
,
1112
(
1997
).
45.
N.
Curle
,
The Laminar Boundary Layer Equations
(
Courier Dover Publications
,
New York
,
2017
).
46.
A.
Mishra
,
H.
Yadav
,
L.
Djenidi
, and
A.
Agrawal
,
Exp. Fluids
61
,
90
(
2020
).
47.
R.
Gardon
and
J. C.
Akfirat
,
Int. J. Heat Mass Transfer
8
,
1262
(
1965
).
48.
See the supplementary material at https://doi.org/10.1116/6.0002349 for left and right nozzle velocity data not shown in the main text.

Supplementary Material

You do not currently have access to this content.