Capacitively coupled plasmas are widely used in semiconductor processes. The control of plasma to obtain uniform deposition and etching is an open problem, particularly within a few millimeters of the substrate edge. Complex material stacks commonly referred to as focus rings are placed at the wafer edge to provide uniform processes across the entire substrate but have limitations with regard to process window and eventual material erosion. One approach is to combine a focus ring with a tunable external circuit ground path termination to extend the plasma uniformity to the wafer edge over a wider process space. The external circuit coupling focus ring to the ground influences the ion energy profile and the ion angular profile by changing the impedance between the focus ring and the ground and allows wafer edge tuning over a wide range of operating parameters. In this work, it is found that the adjustable external circuit can control the partitioning of bias and RF voltages between the RF powered and passively coupled plasma facing surfaces. The focus ring with an external circuit assembly can also control the spatial distribution of plasma density and, therefore, improve the sheath edge profile. These results point to possible source designs for engineering the distribution of power dissipation and the electric field of the wafer edge in industrial plasma reactors.

1.
See: https://en.wikichip.org/wiki/intel/core_i9/i9-12900k for Intel Core i9-12900K (2022).
2.
B.
Wu
,
A.
Kumar
, and
S.
Pamarthy
,
J. Appl. Phys.
108
,
9
(
2010
).
3.
Z.
Donkó
,
A.
Derzsi
,
M.
Vass
,
J.
Schulze
,
E.
Schuengel
, and
S.
Hamaguchi
,
Plasma Sources Sci. Technol.
27
,
104008
(
2018
).
4.
M. A.
Sobolewski
,
Y.
Wang
, and
A.
Goyette
,
J. Appl. Phys.
91
,
6303
(
2002
).
5.
L. L.
Raja
and
M.
Linne
,
J. Appl. Phys.
92
,
7032
(
2002
).
6.
M.
Bogdanova
,
D.
Lopaev
,
S.
Zyryanov
,
D.
Voloshin
, and
T.
Rakhimova
,
Plasma Sources Sci. Technol.
27
,
025003
(
2018
).
7.
G. S.
Hwang
and
K. P.
Giapis
,
J. Vac. Sci. Technol. B
15
,
70
(
1997
).
8.
K.
Bera
,
S.
Rauf
,
K.
Ramaswamy
, and
K.
Collins
,
J. Appl. Phys.
106
,
033301
(
2009
).
9.
Y.-X.
Liu
,
Y.-S.
Liang
,
D.-Q.
Wen
,
Z.-H.
Bi
, and
Y.-N.
Wang
,
Plasma Sources Sci. Technol.
24
,
025013
(
2015
).
10.
Y.
Zhang
,
A.
Zafar
,
D. J.
Coumou
,
S. C.
Shannon
, and
M. J.
Kushner
,
J. Appl. Phys.
117
,
233302
(
2015
).
11.
P. G.
Jung
,
S. S.
Hoon
,
C. C.
Wook
, and
C. H.
Young
,
Plasma Sources Sci. Technol.
22
,
055005
(
2013
).
12.
Y.
Ohtsu
,
N.
Matsumoto
,
J.
Schulze
, and
E.
Schuengel
,
Phys. Plasmas
23
,
033510
(
2016
).
13.
S.
Samukawa
et al.,
J. Phys. D: Appl. Phys.
45
,
253001
(
2012
).
14.
T.
Ishida
, “Plasma processing method,” U.S. patent US5213658 (23 January 1991).
15.
R.
Dhindsa
,
V.
Singh
, and
K.
Tokunaga
, “Focus rings,” U.S. patent US6039836 (19 December 1997).
16.
C.-C.
Huang
, “Plasma chamber equipped with temperature-controlled focus ring and method of operating,” U.S. patent US6767844B2 (3 July 2002).
17.
J.
Pompei
and
P.
Guiochon
, “Cathode sputtering etching device with movable guard ring,” U.S. patent US3730873 (18 March 1971).
18.
Y.
Xiao
,
Y.
Du
,
C.
Smith
,
S. K.
Nam
,
H.
Lee
,
J.-Y.
Lee
, and
S.
Shannon
,
J. Vac. Sci. Technol. A
39
,
043006
(
2021
).
19.
K. C.
Yang
,
S. W.
Park
,
H. S.
Lee
,
D. W.
Kim
, and
G. Y.
Yeom
,
Nanosci. Nanotechnol. Lett.
9
,
24
(
2017
).
20.
D.
Kim
and
D. J.
Economou
,
J. Appl. Phys.
95
,
3311
(
2004
).
21.
L.
Tong
,
Jpn. J. Appl. Phys.
54
,
06GA01
(
2015
).
22.
N. Y.
Babaeva
and
M. J.
Kushner
,
J. Appl. Phys.
101
,
113307
(
2007
).
23.
N. Y.
Babaeva
and
M. J.
Kushner
,
J. Phys. D: Appl. Phys.
41
,
062004
(
2008
).
24.
W.
Johnson
, “Tunable focus ring for plasma processing,” U.S. patent 10/378,992 (5 March 2003).
25.
T.
Ni
and
W.
Collison
, “System and method for controlling plasma with an adjustable coupling to ground circuit,” U.S. patent US9190302 (26 July 2013).
26.
K.
Bera
,
S.
Rauf
,
A.
Balakrishna
, and
K.
Collins
,
IEEE Trans. Plasma Sci.
38
,
3241
(
2010
).
27.
J.
Logan
,
IBM J. Res. Dev.
14
,
172
(
1970
).
28.
S.
Rauf
and
M. J.
Kushner
,
J. Appl. Phys.
83
,
5087
(
1998
).
29.
Y.
Yamazawa
,
Plasma Sources Sci. Technol.
24
,
034015
(
2015
).
30.
J. K.
Olthoff
and
K.
Greenberg
,
J. Res. Natl. Inst. Stand. Technol.
100
,
327
(
1995
).
31.
S.-H.
Lee
,
W. R.
Scott
, Jr.
,
J. S.
Martin
,
G. D.
Larson
, and
G. S.
McCall II
,
Proc. SPIE
4742
,
617
(
2002
).
32.
E.
Barnat
and
G.
Hebner
,
J. Appl. Phys.
96
,
4762
(
2004
).
33.
A.
Perret
,
P.
Chabert
,
J.
Jolly
, and
J.-P.
Booth
,
Appl. Phys. Lett.
86
,
021501
(
2005
).
34.
D.
Peterson
et al., “Model-experiment comparison of radiofrequency phase resolved plasma parameters for moderate pressure capacitively coupled discharges,” in APS Annual Gaseous Electronics Meeting Abstracts, College Station, TX, 28 October–1 November 2019 (APS, New York, 2019), pp. RR3–003.
35.
D. J.
Peterson
,
Characterization of Intermediate Pressure Plasmas with Advanced Microwave Resonator Diagnostics
(
North Carolina State University
,
Raleigh, NC
,
2020
).
36.
K.
Köhler
,
J.
Coburn
,
D.
Horne
,
E.
Kay
, and
J.
Keller
,
J. Appl. Phys.
57
,
59
(
1985
).
37.
A.
Metze
,
D.
Ernie
, and
H.
Oskam
,
J. Appl. Phys.
60
,
3081
(
1986
).
38.
E. A.
Edelberg
and
E. S.
Aydil
,
J. Appl. Phys.
86
,
4799
(
1999
).
39.
T.
Lafleur
,
P.-A.
Delattre
,
J.
Booth
,
E.
Johnson
, and
S.
Diné
,
Rev. Sci. Instrum.
84
,
015001
(
2013
).
40.
C.
Mahony
,
R.
Al Wazzan
, and
W.
Graham
,
Appl. Phys. Lett.
71
,
608
(
1997
).
41.
J.
Schulze
,
E.
Schüngel
,
Z.
Donkó
,
D.
Luggenhölscher
, and
U.
Czarnetzki
,
J. Phys. D: Appl. Phys.
43
,
124016
(
2010
).
42.
K.
Dittmann
,
K.
Matyash
,
S.
Nemschokmichal
,
J.
Meichsner
, and
R.
Schneider
,
Contrib. Plasma Phys.
50
,
942
(
2010
).
43.
C.
Qu
,
S. J.
Lanham
,
S. C.
Shannon
,
S. K.
Nam
, and
M. J.
Kushner
,
J. Appl. Phys.
127
,
133302
(
2020
).
44.
M. M.
Salem
,
J.-F.
Loiseau
, and
B.
Held
,
Eur. Phys. J. Appl. Phys.
3
,
91
(
1998
).
45.
D. M.
Pozar
,
Microwave Engineering
,
3rd ed.
(
John Wiley & Sons
,
Hoboken, NJ
,
2011
), pp. 49–64.
46.
S.
Shannon
,
D.
Hoffman
,
J.-G.
Yang
,
A.
Paterson
, and
J.
Holland
,
J. Appl. Phys.
97
,
103304
(
2005
).
47.
Y.
Yamazawa
,
M.
Nakaya
,
M.
Iwata
, and
A.
Shimizu
,
Jpn. J. Appl. Phys.
46
,
7453
(
2007
).
48.
B. G.
Heil
,
J.
Schulze
,
T.
Mussenbrock
,
R. P.
Brinkmann
, and
U.
Czarnetzki
,
IEEE Trans. Plasma Sci.
36
,
1404
(
2008
).
49.
R.
Upadhyay
,
I.
Sawada
,
P.
Ventzek
, and
L.
Raja
,
J. Phys. D: Appl. Phys.
46
,
472001
(
2013
).
50.
Y.-B.
Hahn
and
S. J.
Pearton
,
Korean J. Chem. Eng.
17
,
304
(
2000
).
51.
J.
Kuhfeld
,
Y.
Sakiyama
, and
U.
Czarnetzki
,
Plasma Sources Sci. Technol.
28
,
035004
(
2019
).
52.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley & Sons
,
Hoboken, NJ
,
2005
).
53.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci.
16
,
638
(
1988
).
54.
J. H.
Keller
and
W.
Pennebaker
,
IBM J. Res. Dev.
23
,
3
(
1979
).
55.
T.
Panagopoulos
and
D. J.
Economou
,
J. Appl. Phys.
85
,
3435
(
1999
).
56.
C.
Lee
and
M.
Lieberman
,
J. Vac. Sci. Technol. A
13
,
368
(
1995
).
57.
D.
Bohm
, “The characteristics of electrical discharges in magnetic fields,” in Qualitative Description of the Arc Plasma in a Magnetic Field (McGraw-Hill, New York, 1949).
58.
K.-U.
Riemann
,
J. Appl. Phys.
65
,
999
(
1989
).
59.
B. G.
Heil
,
U.
Czarnetzki
,
R. P.
Brinkmann
, and
T.
Mussenbrock
,
J. Phys. D: Appl. Phys.
41
,
165202
(
2008
).
60.
D.
Gahan
,
S.
Daniels
,
C.
Hayden
,
P.
Scullin
,
D.
O’Sullivan
,
Y.
Pei
, and
M.
Hopkins
,
Plasma Sources Sci. Technol.
21
,
024004
(
2012
).
61.
F.
Tochikubo
,
T.
Kokubo
,
S.
Kakuta
,
A.
Suzuki
, and
T.
Makabe
,
J. Phys. D: Appl. Phys.
23
,
1184
(
1990
).
62.
M. A.
Lieberman
and
V. A.
Godyak
,
IEEE Trans. Plasma Sci.
26
,
955
(
1998
).
63.
M.
Lieberman
,
J.
Booth
,
P.
Chabert
,
J.
Rax
, and
M.
Turner
,
Plasma Sources Sci. Technol.
11
,
283
(
2002
).
64.
Y.
Yamazawa
,
Appl. Phys. Lett.
95
,
191504
(
2009
).
65.
Z.
Ding
,
W.
Huo
, and
Y.
Wang
,
Plasma Sci. Technol.
6
,
2549
(
2004
).
66.
Z.
Ding
,
W.
Huo
, and
Y.
Wang
,
Phys. Plasmas
11
,
3270
(
2004
).
67.
E.
Schüngel
,
D.
Eremin
,
J.
Schulze
,
T.
Mussenbrock
, and
U.
Czarnetzki
,
J. Appl. Phys.
112
,
053302
(
2012
).
You do not currently have access to this content.