Changes induced by irradiation with 1.1 MeV protons in the transport properties and deep trap spectra of thick (>80 μm) undoped κ-Ga2O3 layers grown on sapphire are reported. Prior to irradiation, the films had a donor concentration of ∼1015 cm−3, with the two dominant donors having ionization energies of 0.25 and 0.15 eV, respectively. The main electron traps were located at Ec−0.7 eV. Deep acceptor spectra measured by capacitance-voltage profiling under illumination showed optical ionization thresholds near 2, 2.8, and 3.4 eV. The diffusion length of nonequilibrium charge carriers for ɛ-Ga2O3 was 70 ± 5 nm prior to irradiation. After irradiation with 1.1 MeV protons to a fluence of 1014 cm−2, there was total depletion of mobile charge carriers in the top 4.5 μm of the film, close to the estimated proton range. The carrier removal rate was 10–20 cm−1, a factor of 5–10 lower than in β-Ga2O3, while the concentration of deep acceptors in the lower half of the bandgap and the diffusion length showed no significant change.

1.
S. J.
Pearton
,
F.
Ren
,
M.
Tadjer
, and
J.
Kim
,
J. Appl. Phys.
124
,
220901
(
2018
).
2.
Gallium Oxide: Materials Properties, Crystal Growth, and Devices
, edited by
M.
Higashiwaki
and
S.
Fujita
, Springer Series in Materials Science (
Springer
,
New York
,
2020
).
3.
Shivani
,
D.
Kaur
,
A.
Ghosh
, and
M.
Kumar
,
Mater. Today Commun.
33
,
104244
(
2022
).
4.
M.
Bosi
,
P.
Mazzolini
,
L.
Seavalli
, and
R.
Fornari
,
J. Mater. Chem. C
8
,
10975
(
2020
).
5.
K
Kaneko
,
K.
Uno
,
R.
Jinno
, and
S.
Fujita
,
J. Appl. Phys.
131
,
090902
(
2022
).
6.
J.
Xu
,
W.
Zheng
, and
F.
Huang
,
J. Mater. Chem. C
7
,
8753
(
2019
).
7.
A.-C.
Liu
,
C.-H.
Hsieh
,
C.
Langpoklakpam
,
K. J.
Singh
,
W.-C.
Lee
,
Y.-K.
Hsiao
,
R.-H.
Horng
,
H.-C.
Kuo
, and
C.-C.
Tu
,
ACS Omega
7
,
36070
(
2022
).
8.
A. J.
Green
et al,
APL Mater.
10
,
029201
(
2022
).
9.
F.
Mezzadri
,
G.
Calestani
,
F.
Boschi
,
D.
Delmonte
,
M.
Bosi
, and
R.
Fornari
,
Inorg. Chem.
55
,
12079
(
2016
).
10.
A.
Parisini
,
A.
Bosio
,
V.
Montedoro
,
A.
Gorreri
,
A.
Lamperti
,
M.
Bosi
,
G.
Garulli
,
S.
Vantaggio
, and
R.
Fornari
,
APL Mater.
7
,
031114
(
2019
).
11.
H.
von Wenckstern
,
Adv. Electron. Mater.
3
,
1600350
(
2017
).
12.
I.
Cora
,
Zs.
Fogarassy
,
R.
Fornari
,
M.
Bosi
,
A.
Recnik
, and
B.
Pécz
,
Acta Mater.
183
,
216
(
2020
).
13.
V. I.
Nikolaev
,
S. I.
Stepanov
,
A. I.
Pechnikov
,
S. V.
Shapenkov
,
M. P.
Scheglov
,
A. V.
Chikiryaka
, and
O. F.
Vyvenko
,
ECS J. Solid State Sci. Technol.
9
,
045014
(
2020
).
14.
V.
Chikiryaka
,
S. I.
Stepanov
,
O. S.
Medvedev
,
S. V.
Shapenkov
,
E. V.
Ubyivovk
, and
O. F.
Vyvenko
,
J. Phys. Conf. Ser.
1400
,
055049
(
2019
).
15.
M.
Kracht
et al,
Phys. Rev. Appl.
8
,
054002
(
2017
).
16.
M.
Kneiß
,
D.
Splith
,
P.
Schlupp
,
A.
Hassa
,
H.
von Wenckstern
,
M.
Lorenz
, and
M.
Grundmann
,
J. Appl. Phys.
130
,
084502
(
2021
).
17.
A.
Hassa
,
C.
Wouters
,
M.
Kneiß
,
D.
Splith
,
C.
Sturm
,
H.
von Wenckstern
,
M.
Albrecht
,
M.
Lorenz
, and
M.
Grundmann
,
J. Phys. D: Appl. Phys.
53
,
485105
(
2020
).
18.
S.
Yusa
,
D.
Oka
, and
T.
Fukumura
,
CrystEngComm
22
,
381
(
2020
).
19.
M.
Kneiß
,
P.
Storm
,
A.
Hassa
,
D.
Splith
,
H.
von Wenckstern
,
M.
Lorenz
, and
M.
Grundmann
,
APL Mater.
8
,
051112
(
2020
).
20.
J. P.
McCandless
et al,
Appl. Phys. Lett.
119
,
062102
(
2021
).
21.
Jin
Wang
et al,
IEEE Electron Device Lett.
41
,
1052
(
2020
).
22.
S. B.
Cho
and
R.
Mishra
,
Appl. Phys. Lett.
112
,
162101
(
2018
).
23.
A. Y.
Polyakov
et al,
J. Alloy Compd.
936
,
168315
(
2023
).
24.
Y.
Oshima
,
K.
Kawara
,
T.
Oshima
, and
T.
Shinohe
,
Jpn J. Appl. Phys.
59
,
115501
(
2020
).
25.
H.
Nishinaka
,
O.
Ueda
,
Y.
Ito
,
N.
Ikenaga
,
N.
Hasuike
, and
M.
Yoshimoto
,
Jpn. J. Appl. Phys.
61
,
018002
(
2022
).
26.
A. Y.
Polyakov
et al,
APL Mater.
10
,
061102
(
2022
).
27.
S. I.
Stepanov
et al,
ECS J. Solid State Sci. Technol.
12
,
015002
(
2023
).
28.
Capacitance Spectroscopy of Semiconductors
, edited by
J. V.
Li
and
G.
Ferrari
(
Pan Stanford Publishing Pte Ltd
,
Singapore
,
2018
), p.
437
.
29.
E. B.
Yakimov
,
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
J.
Yang
,
F.
Ren
,
G.
Yang
, and
J.
Kim
, and
S. J.
Pearton
,
J. Appl. Phys.
123
,
185704
(
2018
).
30.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
S. J.
Pearton
,
F.
Ren
,
A. V.
Chernykh
,
P. B.
Lagov
, and
T. V.
Kulevoy
,
APL Mater.
6
,
096102
(
2018
).
31.
A. Y.
Polyakov
et al,
Appl. Phys. Lett.
113
,
092102
(
2018
).
32.
Z.
Zhang
,
E.
Farzana
,
A. R.
Arehart
, and
S. A.
Ringel
,
Appl. Phys. Lett.
108
,
052105
(
2016
).
33.
A. Y.
Polyakov
,
V. I.
Nikolaev
,
E. B.
Yakimov
,
F.
Ren
,
S. J.
Pearton
, and
J.
Kim
,
J. Vac. Sci. Technol. A
40
,
020804
(
2022
).
34.
X.
Xia
et al,
ECS J. Solid State Sci. Technol.
11
,
095001
(
2022
).
35.
H. J.
Ghadi
,
J. F.
McGlone
,
E.
Farzana
,
A. R.
Arehart
, and
S. A.
Ringel
, “
Radiation effects on β-Ga2O3 materials and devices
,” in
Ultrawide Bandgap β-Ga2O3 Semiconductor: Theory and Applications
, edited by
J. S.
Speck
and
E.
Farzana
(
AIP Publishing
,
Melville, NY
,
2023
), Chap. 12, pp.
12-1
12-26
.
36.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1818
(
2010
).
37.
See supplementary material at https://doi.org/10.1116/6.0002673 for additional characterization results from the samples.

Supplementary Material

You do not currently have access to this content.