NiO/β-(AlxGa1−x)2O3/Ga2O3 heterojunction lateral geometry rectifiers with diameter 50–100 μm exhibited maximum reverse breakdown voltages >7 kV, showing the advantage of increasing the bandgap using the β-(AlxGa1−x)2O3 alloy. This Si-doped alloy layer was grown by metal organic chemical vapor deposition with an Al composition of ∼21%. On-state resistances were in the range of 50–2180 Ω cm2, leading to power figures-of-merit up to 0.72 MW cm−2. The forward turn-on voltage was in the range of 2.3–2.5 V, with maximum on/off ratios >700 when switching from 5 V forward to reverse biases up to −100 V. Transmission line measurements showed the specific contact resistance was 0.12 Ω cm2. The breakdown voltage is among the highest reported for any lateral geometry Ga2O3-based rectifier.

2.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
3.
P.
Dong
,
J.
Zhang
,
Q.
Yan
,
Z.
Liu
,
P.
Ma
,
H.
Zhou
, and
Y.
Hao
,
IEEE Electron. Device Lett.
43
,
765
(
2022
).
4.
E.
Chikoidze
et al,
J. Mater. Chem. C
7
,
10231
(
2019
).
5.
Y.
Wang
et al,
IEEE Trans. Power Electron.
37
,
3743
(
2022
).
6.
E.
Ahmadi
and
Y.
Oshima
,
J. Appl. Phys.
126
,
160901
(
2019
).
7.
S. J.
Pearton
,
F.
Ren
,
M.
Tadjer
, and
J.
Kim
,
J. Appl. Phys.
124
,
222901
(
2018
).
9.
A. J.
Wileman
,
S.
Aslam
, and
S.
Perinpanayagam
,
Prog. Aerosp. Sci.
127
,
100739
(
2021
).
10.
J.
Wang
,
IEEE Power Electron. Mater.
9
,
16
(
2022
).
11.
J. S.
Sullivan
, “Wide bandgap extrinsic photoconductive switches,” Lawrence Livermore National Laboratory Report LL LLNL-TH-523591,
2012
.
12.
T.
Watahiki
,
Y.
Yuda
,
A.
Furukawa
,
M.
Yamamuka
,
Y.
Takiguchi
, and
S.
Miyajima
,
Appl. Phys. Lett.
111
,
222104
(
2017
).
13.
J.
Zhang
et al,
ACS Appl. Electron. Mater.
2
,
456
(
2020
).
14.
Y.
Lv
et al,
IEEE Trans. Power Electron.
36
,
6179
(
2021
).
15.
H. H.
Gong
,
X. H.
Chen
,
Y.
Xu
,
F.-F.
Ren
,
S. L.
Gu
, and
J. D.
Ye
,
Appl. Phys. Lett.
117
,
022104
(
2020
).
16.
F.
Zhou
et al,
IEEE Trans. Power Electron.
37
,
1223
(
2022
).
17.
J.-S.
Li
,
C.-C.
Chiang
,
X.
Xia
,
F.
Ren
,
H.
Kim
, and
S. J.
Pearton
,
Appl. Phys. Lett.
121
,
042105
(
2022
).
18.
A. F. M. A. U.
Bhuiyan
,
Z.
Feng
,
J. M.
Johnson
,
Z.
Chen
,
H.
Huang
,
J.
Hwang
, and
H.
Zhao
,
Appl. Phys. Lett.
115
,
120602
(
2019
).
19.
Hannah N. Masten, James Spencer Lundh, Joseph A. Spencer, Fikadu Alema, Andrei Osinsky, Alan G. Jacobs, Karl D. Hobart, and Marko J. Tadjer, paper presented at IWGO 2022, Japan, 20 October 2022.
20.
P. P.
Sundaram
,
F.
Alema
,
A.
Osinsky
, and
S. J.
Koester
,
J. Vac. Sci. Technol. A
40
,
043211
(
2022
).
21.
A. F. M. A. U.
Bhuiyan
,
Z.
Feng
,
H.
Huang
,
L.
Meng
,
J.
Hwang
, and
H.
Zhao
,
J. Vac. Sci. Technol. A
39
,
063207
(
2021
).
22.
A. F. M. A. U.
Bhuiyan
,
Z.
Feng
,
J. M.
Johnson
,
H.
Huang
,
J.
Hwang
, and
H.
Zhao
,
Appl. Phys. Lett.
117
,
142107
(
2020
).
23.
G.
Seryogin
,
F.
Alema
,
N.
Valente
,
H.
Fu
,
E.
Steinbrunner
,
A. T.
Neal
,
S.
Mou
,
A.
Fine
, and
A.
Osinsky
,
Appl. Phys. Lett.
117
,
262101
(
2020
).
24.
K.
Konishi
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
110
,
103506
(
2017
).
25.
K.
Sasaki
,
D.
Wakimoto
,
Q. T.
Thieu
,
Y.
Koishikawa
,
A.
Kuramata
,
M.
Higashiwaki
, and
S.
Yamakoshi
,
IEEE Electron. Device Lett.
38
,
783
(
2017
).
26.
J.
Yang
,
F.
Ren
,
M.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
,
ECS J. Solid State Sci. Technol.
7
,
Q92
(
2018
).
27.
J.
Yang
,
F.
Ren
,
Y. T.
Chen
,
Y. T.
Liao
,
C. W.
Chang
,
J.
Lin
,
M. J.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
,
IEEE J. Electron. Devices
7
,
57
(
2019
).
28.
Z.
Hu
,
H.
Zhou
,
K.
Dang
,
Y. Z.
Cai Feng
,
Y.
Gao
,
Q.
Feng
,
J.
Zhang
, and
Y.
Hao
,
IEEE J. Electron Devices
6
,
815
(
2018
).
29.
C.
Joishi
,
S.
Rafique
,
Z.
Xia
,
L.
Han
,
S.
Krishnamoorthy
,
Y.
Zhang
,
S.
Lodha
,
H.
Zhao
, and
S.
Rajan
,
Appl. Phys. Express
11
,
031101
(
2018
).
30.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
D.
Jena
, and
H. G.
Xing
,
IEEE Electron. Device Lett.
41
,
107
(
2020
).
31.
M.
Ji
,
N. R.
Taylo
,
I.
Kravchenko
,
P.
Joshi
,
T.
Aytug
,
L. R.
Cao
, and
M.
Parans Paranthaman
,
IEEE Trans. Power Electron.
36
,
41
(
2021
).
32.
Ming
Xiao
et al,
IEEE Trans. Power Electron.
36
,
8565
(
2021
).
33.
W.
Xiong
et al,
IEEE Electron. Device Lett.
42
,
430
(
2021
).
34.
J. A.
Spencer
,
A. L.
Mock
,
A. G.
Jacobs
,
M.
Schubert
,
Y.
Zhang
, and
M. J.
Tadjer
,
Appl. Phys. Rev.
9
,
011315
(
2022
).
35.
X.
Xia
,
J. S.
Li
,
C. C.
Chiang
,
T. J.
Yoo
,
F.
Ren
,
H.
Kim
, and
S. J.
Pearton
,
J. Phys. D: Appl. Phys.
55
,
385105
(
2022
).
36.
X.
Lu
,
X.
Zhou
,
H.
Jiang
,
K. W.
Ng
,
Z.
Chen
,
Y.
Pei
,
K. M.
Lau
, and
G.
Wang
,
IEEE Electron. Device Lett.
41
,
449
(
2020
).
37.
H.
Gong
,
X.
Chen
,
Y.
Xu
,
Y.
Chen
,
F.
Ren
,
B.
Liu
,
S.
Gu
,
R.
Zhang
, and
J.
Ye
,
IEEE Trans. Electron. Devices
67
,
3341
(
2020
).
38.
A.
Bhattacharyya
et al,
Appl. Phys. Express
15
,
061001
(
2022
).
39.
Y.
Lv
et al,
IEEE Electron. Device Lett.
41
,
537
(
2020
).
40.
A.
Bhattacharyya
,
P.
Ranga
,
S.
Roy
,
C.
Peterson
,
F.
Alema
,
G.
Seryogin
,
A.
Osinsky
, and
S.
Krishnamoorthy
,
IEEE Electron. Device Lett.
42
,
1272
(
2021
).
41.
K.
Zeng
,
A,
Vaidya
, and
U.
Singisetti
,
IEEE Electron. Device Lett.
39
,
1385
(
2018
).
42.
S.
Sharma
,
L.
Meng
,
A. F. M.
Anhar Uddin Bhuiyan
,
Z.
Feng
,
D.
Eason
,
H.
Zhao
, and
U.
Singisetti
,
IEEE Electron. Device Lett.
43
,
2029
(
2022
).
43.
S.
Sharma
,
K.
Zeng
,
S.
Saha
, and
U.
Singisetti
,
IEEE Electron. Device Lett.
41
,
836
(
2020
).
44.
K.
Tetzner
et al,
IEEE Electron. Device Lett.
40
,
1503
(
2019
).
45.
R.
Karsthof
,
M.
Grundmann
,
A. M.
Anton
, and
F.
Kremer
,
Phys. Rev. B
99
,
235201
(
2019
).
46.
G.
Geneste
,
B.
Amadon
,
M.
Torrent
, and
G.
Dezanneau
,
Phys. Rev. B
96
,
134123
(
2017
).
47.
K.
Jung
,
H.
Seo
,
Y.
Kim
,
H.
Im
,
J.
Hong
,
J.-W.
Park
, and
J.-K.
Lee
,
Appl. Phys. Lett.
90
,
052104
(
2007
).
48.
Y.-H.
Hong
et al,
Appl. Phys. Lett.
121
,
212102
(
2022
).
You do not currently have access to this content.