We report the selective etching mechanism of silicon oxide using a mixture of hydrogen fluoride (HF) and NH4F gases. A damage-free selective removal of native oxide has been used in semiconductor manufacturing by forming and removing the ammonium fluorosilicate [(NH4)2SiF6] salt layer. A downstream plasma of NF3/NH3 or a gas-phase mixture of HF and NH4F was used to form (NH4)2SiF6. We modeled and simulated the fluorination of silicon oxide and the salt formation by density functional theory calculation. First, we simulated the successive fluorination of silicon oxide using SiO2 slab models. The fluorination reactions of SiO2 surfaces by the mixture produced a volatile SiF4 molecule or a surface anion of –OSiF4−* with an NH4+ cation with low activation energies. Unlike HF, NH4F produced surface salt species consisting of a surface anion and an ammonium cation. Next, we simulated the (NH4)2SiF6 formation from the two reaction products on fluorinated SiO2 surfaces. (NH4)2SiF6 can be formed exothermally with low activation energies (0.27 or 0.30 eV). Finally, we compared silicon with SiO2 to demonstrate the inherently selective etching of silicon oxide. The fluorination reactions of silicon by the mixture showed the activation energies significantly higher than the SiO2 cases, 1.22–1.56 eV by HF and 1.94–2.46 eV by NH4F due to the less stable transition state geometries. Therefore, the selective salt formation on silicon oxide, not on silicon, is expected in near-room temperature processing, which enables selective etching of silicon oxide.

1.
J.
Tang
,
N.
Ingle
, and
D.
Yang
, US8501629B2 (6 August 2013).
2.
S.
Ji
,
Q.-H.
Han
, and
H.-Y.
Zhang
,
ECS Trans.
75
,
15
(
2017
).
3.
D. A.
Ferrer
,
A.
Levesque
,
A.
Sirman
,
J.
Lee
,
A.
Subramaniyan
,
L.
Lanzerotti
,
D. F.
Hilscher
, and
E.
Alptekin
, in
2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference
, Saratoga Springs, NY, 16–19 May 2016 (
IEEE
,
New York
,
2016
), pp.
361
363
.
4.
M.
Labrot
,
F.
Cheynis
,
D.
Barge
,
P.
Maury
,
M.
Juhel
,
S.
Lagrasta
, and
P.
Müller
,
Microelectron. Eng.
180
,
56
(
2017
).
5.
A.
Redolfi
et al,
Solid-State Electron.
71
,
106
(
2012
).
6.
H.
Tong
et al,
ECS Trans.
60
,
447
(
2014
).
7.
P. E.
Raynal
,
V.
Loup
,
L.
Vallier
,
M.
Martin
,
J.
Moeyaert
,
B.
Pelissier
,
P.
Rodriguez
,
J. M.
Hartmann
, and
P.
Besson
,
Microelectron. Eng.
187–188
,
84
(
2018
).
8.
M.
Grégoire
,
B.
Horvat
,
B. N.
Bozon
,
D.
Combe
,
K.
Dabertrand
, and
D.
Roy
,
Micro Nano Eng.
2
,
104
(
2019
).
9.
J.
Lei
et al, in
2006 IEEE International Symposium on Semiconductor Manufacturing
, Tokyo, Japan, 25–27 September 2006 (
IEEE
,
New York
,
2006
), pp.
393
396
.
10.
R.
Yang
,
N.
Su
,
P.
Bonfanti
,
J.
Nie
,
J.
Ning
, and
T. T.
Li
,
J. Vac. Sci. Technol. B
28
,
56
(
2010
).
11.
Y.
Bao
et al, in
2015 China Semiconductor Technology International Conference
, Shanghai, China, 15–16 March 2015 (
IEEE
,
New York
,
2015
), pp.
1
3
.
12.
F.-H.
Hsu
et al, in
25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014)
, Saratoga Springs, NY, 19–21 May 2014 (
IEEE
,
New York
,
2014
), pp.
242
244
.
13.
J.
Kikuchi
,
M.
Iga
,
H.
Ogawa
,
S.
Fujimura
, and
H. Y.
Hiroshi Yano
,
Jpn. J. Appl. Phys.
33
,
2207
(
1994
).
14.
A.
Tavernier
,
L.
Favennec
,
T.
Chevolleau
, and
V.
Jousseaume
,
ECS Trans.
45
,
225
(
2012
).
15.
J.
Zhao
,
H. J.
Gao
,
Y. Z.
Zeng
,
K.
Awut
,
W. J.
Song
,
S. F.
Yu
,
G.
Cai
, and
B.
Zhang
,
ECS Trans.
60
,
721
(
2014
).
16.
K.-F.
Lo
,
F.-H.
Hsu
,
X.-G.
Lin
,
H.-J.
Lee
,
N.-T.
Lian
,
T.
Yang
, and
K.-C.
Chen
, in
2015 26th Annual SEMI Advanced Semiconductor Manufacturing Conference
, Saratoga Springs, NY, 3–6 May 2015 (
IEEE
,
New York
,
2015
), pp.
309
312
.
17.
M.
Mastari
et al,
Nanotechnology
29
,
275702
(
2018
).
18.
M.
Labrot
,
F.
Cheynis
,
D.
Barge
,
P.
Müller
, and
M.
Juhel
,
Appl. Surf. Sci.
371
,
436
(
2016
).
19.
S.
Matsuo
,
J. Vac. Sci. Technol.
17
,
587
(
1980
).
20.
U.
Niggerbrügge
and
P.
Balk
,
Solid-State Electron.
25
,
859
(
1982
).
21.
H.
Jang
and
H.
Chae
,
Nano
12
,
1750025
(
2017
).
22.
C.
Han
,
Y.
Yang
,
W.
Liu
,
Y.
Lu
, and
J.
Cheng
,
SPIN
08
,
1850002
(
2018
).
23.
H.
Habuka
,
T.
Otsuka
, and
M.
Katayama
,
J. Cryst. Growth
186
,
104
(
1998
).
24.
N.
Miki
,
H.
Kikuyama
,
I.
Kawanabe
,
M.
Miyashita
, and
T.
Ohmi
,
IEEE Trans. Electron Devices
37
,
107
(
1990
).
25.
H.
Nishino
,
N.
Hayasaka
, and
H.
Okano
,
J. Appl. Phys.
74
,
1345
(
1993
).
26.
H. J.
Oh
,
J. H.
Lee
,
M. S.
Lee
,
W. G.
Shin
,
S. Y.
Kang
,
G. D.
Kim
, and
D. H.
Ko
,
ECS Trans.
61
,
1
(
2014
).
27.
H.-T.
Kim
,
J.-S.
Lim
,
M.-S.
Kim
,
H.-J.
Oh
,
D.-H.
Ko
,
G.-D.
Kim
,
W.-G.
Shin
, and
J.-G.
Park
,
Microelectron. Eng.
135
,
17
(
2015
).
28.
N.
Posseme
,
V.
Ah-Leung
,
O.
Pollet
,
C.
Arvet
, and
M.
Garcia-Barros
,
J. Vac. Sci. Technol. A
34
,
061301
(
2016
).
29.
J. W.
Park
,
M. G.
Chae
,
D. S.
Kim
,
W. O.
Lee
,
H. D.
Song
,
C.
Choi
, and
G. Y.
Yeom
,
J. Phys. D: Appl. Phys.
51
,
445201
(
2018
).
30.
Y.
Hagimoto
,
H.
Ugajin
,
D.
Miyakoshi
,
H.
Iwamoto
,
Y.
Muraki
, and
T.
Orii
,
Solid State Phenom.
134
,
7
(
2007
).
31.
S.
Saito
,
Y.
Hagimoto
,
H.
Iwamoto
, and
Y.
Muraki
,
Solid State Phenom.
145–146
,
227
(
2009
).
32.
H.
Ogawa
,
T.
Arai
,
M.
Yanagisawa
,
T.
Ichiki
, and
Y.
Horiike
,
Jpn. J. Appl. Phys.
41
,
5349
(
2002
).
33.
T.
Hoshino
and
Y.
Nishioka
,
J. Chem. Phys.
111
,
2109
(
1999
).
34.
R.
Hidayat
,
H.-L.
Kim
,
K.
Khumaini
,
T.
Chowdhury
,
T. R.
Mayangsari
,
B.
Cho
,
S.
Park
, and
W.-J.
Lee
,
Phys. Chem. Chem. Phys.
25
,
3890
(
2023
).
35.
B.
Delley
,
J. Chem. Phys.
113
,
7756
(
2000
).
36.
B.
Delley
,
Theor. Comput. Chem.
2
,
221
(
1995
).
37.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
38.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
39.
B.
Delley
,
J. Chem. Phys.
92
,
508
(
1990
).
40.
M.
Khosravi
,
V.
Murthy
, and
I. D. R.
Mackinnon
,
Comput. Mater. Sci.
171
,
109225
(
2020
).
41.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002433 for basis set selection, bond dissociation energy (BDE) in NH4F molecule, free Gibbs energy of desorption of H2O or NH3, and the second to the fourth fluorination step of Si by NH4F.
42.
T.
Chowdhury
,
R.
Hidayat
,
T. R.
Mayangsari
,
J.
Gu
,
H.-L.
Kim
,
J.
Jung
, and
W.-J.
Lee
,
J. Vac. Sci. Technol. A
37
,
021001
(
2019
).
43.
T.
Chowdhury
,
R.
Hidayat
,
T. R.
Mayangsari
,
J.
Gu
,
H.-L.
Kim
,
J.
Jung
, and
W.-J.
Lee
,
J. Vac. Sci. Technol. A
40
,
047001
(
2022
).
44.
N.
Govind
,
M.
Petersen
,
G.
Fitzgerald
,
D.
King-Smith
, and
J.
Andzelm
,
Comput. Mater. Sci.
28
,
250
(
2003
).
45.
K.
Khumaini
,
R.
Hidayat
,
T. R.
Mayangsari
,
T.
Chowdhury
,
H.-L.
Kim
,
S.-I.
Lee
, and
W.-J.
Lee
,
Appl. Surf. Sci.
585
,
152750
(
2022
).
46.
R.
McIntosh
,
T.-S.
Kuan
, and
E.
Defresart
,
J. Electron. Mater.
21
,
57
(
1992
).
47.
M.
Wong
,
M. M.
Moslehi
, and
D. W.
Reed
,
J. Electrochem. Soc.
138
,
1799
(
1991
).
48.
A. K.
Chandra
and
T.
Uchimaru
,
J. Phys. Chem. A
104
,
9244
(
2000
).
49.
S. J.
Blanksby
and
G. B.
Ellison
,
Acc. Chem. Res.
36
,
255
(
2003
).
50.
S.
Kim
et al,
J. Mater. Chem. C
10
,
6696
(
2022
).

Supplementary Material

You do not currently have access to this content.