Anion exchange membrane water electrolysis (AEMWE) is a promising technology for renewable electricity-driven water splitting toward hydrogen production. However, application of AEMWE at industrial scale requires the development of oxygen evolution reaction (OER) electrocatalysts showing long-term stability under mild alkaline conditions. Among these, nickel cobalt oxide thin films are considered promising candidates. The ideal chemical composition of these oxides remains debatable, with recent literature indicating that rock-salt NiCoO2 may exhibit similar OER activity as the traditional spinel NiCo2O4. In this work, we present the development of a plasma-enhanced atomic layer deposition (ALD) process of nickel cobalt oxide thin films (∼20 nm) with focus on the role of their chemical composition and crystal structure on the OER activity. The film composition is tuned using a supercycle approach built upon CoOx cycles with CoCp2 as a precursor and O2 plasma as a co-reactant and NiOx cycles with Ni(MeCp)2 as a precursor and O2 plasma as a co-reactant. The films exhibit a change in the crystallographic phase from the rock-salt to spinel structure for increasing cobalt at. %. This change is accompanied by an increase in the Ni3+-to-Ni2+ ratio. Interestingly, an increase in electrical conductivity is observed for mixed oxides, with an optimum of (2.4 ± 0.2) × 102 S/cm at 64 at. % Co, outperforming both NiO and Co3O4 by several orders of magnitude. An optimal electrocatalytic performance is observed for 80 at. % Co films. Cyclic voltammetry measurements simultaneously show a strong dependence of the OER-catalytic performance on the electrical conductivity. The present study highlights the merit of ALD in controlling the nickel cobalt oxide chemical composition and crystal structure to gain insight into its electrocatalytic performance. Moreover, these results suggest that it is important to disentangle conductivity effects from the electrocatalytic activity in future work.

1.
H.
Wang
,
K. H. L.
Zhang
,
J. P.
Hofmann
,
V. A.
de la Peña OˊShea
, and
F. E.
Oropeza
,
J. Mater. Chem. A
9
,
19465
(
2021
).
2.
N. L.
Panwar
,
S. C.
Kaushik
, and
S.
Kothari
,
Renew. Sustain. Energy Rev.
15
,
1513
(
2011
).
3.
W.
Li
,
H.
Tian
,
L.
Ma
,
Y.
Wang
,
X.
Liu
, and
X.
Gao
,
Mater. Adv.
3
,
5598
(
2022
).
4.
International Energy Agency,
Global Hydrogen Review
(
OECD
, Paris,
2021
).
5.
A.
Badgett
,
M.
Ruth
, and
B.
Pivovar
,
Electrochemical Power Sources: Fundamentals, Systems, and Applications
(
Elsevier
, Amsterdam,
2022
), pp.
327
364
.
6.
N.
Du
,
C.
Roy
,
R.
Peach
,
M.
Turnbull
,
S.
Thiele
, and
C.
Bock
,
Chem. Rev.
122
,
11830
(
2022
).
7.
F. M.
Sapountzi
,
J. M.
Gracia
,
C. J. (Kees-J.)
Weststrate
,
H. O. A.
Fredriksson
, and
J. W. (Hans).
Niemantsverdriet
,
Prog. Energy Combust. Sci.
58
,
1
(
2017
).
8.
H. A.
Miller
,
K.
Bouzek
,
J.
Hnat
,
S.
Loos
,
C. I.
Bernäcker
,
T.
Weißgärber
,
L.
Röntzsch
, and
J.
Meier-Haack
,
Sustain. Energy Fuels
4
,
2114
(
2020
).
9.
10.
F. M.
Sapountzi
,
M.
Lavorenti
,
W.
Vrijburg
,
S.
Dimitriadou
,
B.
Tyburska-Pueschel
,
P.
Thüne
,
H.
Niemantsverdriet
,
T. V.
Pfeiffer
, and
M. N.
Tsampas
,
Catalysts
12
,
1343
(
2022
).
11.
I.
Vincent
and
D.
Bessarabov
,
Renew. Sustain. Energy Rev.
81
,
1690
(
2018
).
12.
R. R.
Raja Sulaiman
,
W. Y.
Wong
, and
K. S.
Loh
,
Int. J. Energy Res.
46
,
2241
(
2022
).
13.
P.
Shirvanian
,
A.
Loh
,
S.
Sluijter
, and
X.
Li
,
Electrochem. Commun.
132
,
107140
(
2021
).
14.
Q.
Xu
,
L.
Zhang
,
J.
Zhang
,
J.
Wang
,
Y.
Hu
,
H.
Jiang
, and
C.
Li
,
EnergyChem
4
,
100087
(
2022
).
15.
L.
Sun
,
Q.
Luo
,
Z.
Dai
, and
F.
Ma
,
Coord. Chem. Rev.
444
,
214049
(
2021
).
16.
D.
Henkensmeier
,
M.
Najibah
,
C.
Harms
,
J.
Žitka
,
J.
Hnát
, and
K.
Bouzek
,
J. Electrochem. Energy Convers. Storage
18
,
024001
(
2021
).
17.
Q.
Guo
et al,
Small
16
,
1907029
(
2020
).
18.
P.
Wang
and
B.
Wang
,
ACS Appl. Mater. Interfaces
13
,
59593
(
2021
).
19.
H.
Sun
,
Z.
Yan
,
F.
Liu
,
W.
Xu
,
F.
Cheng
, and
J.
Chen
,
Adv. Mater.
32
,
1806326
(
2020
).
20.
C. C. L.
McCrory
,
S.
Jung
,
I. M.
Ferrer
,
S. M.
Chatman
,
J. C.
Peters
, and
T. F.
Jaramillo
,
J. Am. Chem. Soc.
137
,
4347
(
2015
).
21.
L.
Zhang
,
Q.
Fan
,
K.
Li
,
S.
Zhang
, and
X.
Ma
,
Sustain. Energy Fuels
4
,
5417
(
2020
).
22.
G.
Fu
et al,
Chem. Mater.
31
,
419
(
2019
).
23.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
24.
Z.
Hu
,
L.
Hao
,
F.
Quan
, and
R.
Guo
,
Catal. Sci. Technol.
12
,
436
(
2022
).
25.
A.
Bergmann
,
E.
Martinez-Moreno
,
D.
Teschner
,
P.
Chernev
,
M.
Gliech
,
J. F.
de Araújo
,
T.
Reier
,
H.
Dau
, and
P.
Strasser
,
Nat. Commun.
6
,
8625
(
2015
).
26.
R.
Zhang
et al,
ACS Catal.
8
,
3803
(
2018
).
27.
M.
Cui
,
X.
Ding
,
X.
Huang
,
Z.
Shen
,
T.-L.
Lee
,
F. E.
Oropeza
,
J. P.
Hofmann
,
E. J. M.
Hensen
, and
K. H. L.
Zhang
,
Chem. Mater.
31
,
7618
(
2019
).
28.
J.
Zhao
et al,
Chem. Eng. J.
435
,
134261
(
2022
).
29.
M.
Harada
,
F.
Kotegawa
, and
M.
Kuwa
,
ACS Appl. Energy Mater.
5
,
278
(
2022
).
30.
R. N.
Singh
,
J. P.
Pandey
,
N. K.
Singh
,
B.
Lal
,
P.
Chartier
, and
J.-F.
Koenig
,
Electrochim. Acta
45
,
1911
(
2000
).
31.
X.
Shi
,
S. L.
Bernasek
, and
A.
Selloni
,
J. Phys. Chem. C
120
,
14892
(
2016
).
32.
Y. C.
Zhang
,
C.
Han
,
J.
Gao
,
L.
Pan
,
J.
Wu
,
X. D.
Zhu
, and
J. J.
Zou
,
ACS Catal.
11
,
12485
(
2021
).
33.
Y.
Bitla
et al,
Sci. Rep.
5
,
15201
(
2015
).
34.
Q.
Zhang
,
Y.
Xie
,
F.
Ling
,
Z.
Song
,
D.
Li
,
Y.
Lu
,
X.
Tang
,
Y.
Li
, and
X.
Zhou
,
Vacuum
196
,
110764
(
2022
).
35.
X. C.
Huang
et al,
Phys. Rev. B
100
,
115301
(
2019
).
36.
K. H. L.
Zhang
,
K.
Xi
,
M. G.
Blamire
, and
R. G.
Egdell
,
J. Phys.: Condens. Matter
28
,
383002
(
2016
).
37.
X.
Sun
,
J.
Sun
,
C.
Wu
,
L.
Guo
,
L.
Hou
, and
C.
Yuan
,
Mater. Today Energy
19
,
100592
(
2021
).
38.
L.
Trotochaud
,
J. K.
Ranney
,
K. N.
Williams
, and
S. W.
Boettcher
,
J. Am. Chem. Soc.
134
,
17253
(
2012
).
39.
R. D. L.
Smith
,
M. S.
Prévot
,
R. D.
Fagan
,
S.
Trudel
, and
C. P.
Berlinguette
,
J. Am. Chem. Soc.
135
,
11580
(
2013
).
40.
A.
Ashok
,
A.
Kumar
,
J.
Ponraj
,
S. A.
Mansour
, and
F.
Tarlochan
,
Int. J. Hydrogen Energy
44
,
16603
(
2019
).
41.
K. L.
Nardi
,
N.
Yang
,
C. F.
Dickens
,
A. L.
Strickler
, and
S. F.
Bent
,
Adv. Energy Mater.
5
,
1500412
(
2015
).
42.
X.
Deng
,
S.
Öztürk
,
C.
Weidenthaler
, and
H.
Tüysüz
,
ACS Appl. Mater. Interfaces
9
,
21225
(
2017
).
43.
V.
Viswanathan
,
K. L.
Pickrahn
,
A. C.
Luntz
,
S. F.
Bent
, and
J. K.
Nørskov
,
Nano Lett.
14
,
5853
(
2014
).
44.
S.
Schlicht
,
S.
Haschke
,
V.
Mikhailovskii
,
A.
Manshina
, and
J.
Bachmann
,
ChemElectroChem
5
,
1259
(
2018
).
45.
Y.
Cao
,
Y.
Wu
,
C.
Badie
,
S.
Cadot
,
C.
Camp
,
E. A.
Quadrelli
, and
J.
Bachmann
,
ACS Omega
4
,
8816
(
2019
).
46.
S.
Haschke
,
D.
Pankin
,
Y.
Petrov
,
S.
Bochmann
,
A.
Manshina
, and
J.
Bachmann
,
ChemSusChem
10
,
3644
(
2017
).
47.
A.
Goulas
and
J.
Ruud van Ommen
,
J. Mater. Chem. A
1
,
4647
(
2013
).
48.
H.
Van Bui
et al,
Nanoscale
9
,
10802
(
2017
).
49.
J.
Gascon
,
J. R.
van Ommen
,
J. A.
Moulijn
, and
F.
Kapteijn
,
Catal. Sci. Technol.
5
,
807
(
2015
).
50.
R.
Zhang
,
G.
van Straaten
,
V.
di Palma
,
G.
Zafeiropoulos
,
M. C. M.
van de Sanden
,
W. M. M.
Kessels
,
M. N.
Tsampas
, and
M.
Creatore
,
ACS Catal.
11
,
2774
(
2021
).
51.
J.
Rongé
,
T.
Dobbelaere
,
L.
Henderick
,
M. M.
Minjauw
,
S. P.
Sree
,
J.
Dendooven
,
J. A.
Martens
, and
C.
Detavernier
,
Nanoscale Adv.
1
,
4166
(
2019
).
52.
K. L.
Pickrahn
,
A.
Garg
, and
S. F.
Bent
,
ACS Catal.
5
,
1609
(
2015
).
53.
F.
Mattelaer
,
T.
Bosserez
,
J.
Rongé
,
J. A.
Martens
,
J.
Dendooven
, and
C.
Detavernier
,
RSC Adv.
6
,
98337
(
2016
).
54.
K. L.
Pickrahn
,
Y.
Gorlin
,
L. C.
Seitz
,
A.
Garg
,
D.
Nordlund
,
T. F.
Jaramillo
, and
S. F.
Bent
,
Phys. Chem. Chem. Phys.
17
,
14003
(
2015
).
55.
Y.
Koshtyal
,
I.
Mitrofanov
,
D.
Nazarov
,
O.
Medvedev
,
A.
Kim
,
I.
Ezhov
,
A.
Rumyantsev
,
A.
Popovich
, and
M. Y.
Maximov
,
Nanomaterials
11
,
907
(
2021
).
56.
D. J.
Hagen
,
T. S.
Tripathi
, and
M.
Karppinen
,
Dalt. Trans.
46
,
4796
(
2017
).
57.
S. B. S.
Heil
,
E.
Langereis
,
F.
Roozeboom
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Electrochem. Soc.
153
,
G956
(
2006
).
58.
M. E.
Donders
,
H. C. M.
Knoops
,
M. C. M.
van
,
W. M. M.
Kessels
, and
P. H. L.
Notten
,
J. Electrochem. Soc.
158
,
G92
(
2011
).
59.
D.
Koushik
et al,
J. Mater. Chem. C
7
,
12532
(
2019
).
60.
H. L.
Lu
,
G.
Scarel
,
M.
Alia
,
M.
Fanciulli
,
S.-J.
Ding
, and
D. W.
Zhang
,
Appl. Phys. Lett.
92
,
222907
(
2008
).
61.
C.
Gammer
,
C.
Mangler
,
C.
Rentenberger
, and
H. P.
Karnthaler
,
Scr. Mater.
63
,
312
(
2010
).
62.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002414 for (i) Co-% determination, (ii) ALD process, (iii) EDX measurements of mixed cobalt nickel oxide, (iv) Ni3+-to-Ni2 + ratio, and (v) electrochemical measurements.
63.
See www.detect99.nl for Detect99.
64.
J. A.
Maxwell
,
J. L.
Campbell
, and
W. J.
Teesdale
,
Nucl. Instrum. Methods Phys. Res. Sect. B
43
,
218
(
1989
).
65.
N. P.
Barradas
and
C.
Jeynes
,
Nucl. Instrum. Methods Phys. Res. Sect. B
266
,
1875
(
2008
).
66.
J. W. F.
Innocent
,
M.
Napari
,
A. L.
Johnson
,
T. R.
Harris-Lee
,
M.
Regue
,
T.
Sajavaara
,
J. L.
MacManus-Driscoll
,
F.
Marken
, and
F.
Alkhalil
,
Mater. Adv.
2
,
273
(
2021
).
67.
Y.
Koshtyal
,
D.
Nazarov
,
I.
Ezhov
,
I.
Mitrofanov
,
A.
Kim
,
A.
Rymyantsev
,
O.
Lyutakov
,
A.
Popovich
, and
M.
Maximov
,
Coatings
9
,
301
(
2019
).
68.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
,
97th ed.
(
CRC
, Boca Raton,
2016
).
69.
I.
Mitrofanov
,
D.
Nazarov
,
Y.
Koshtyal
,
I.
Ezhov
,
P.
Fedorov
,
A.
Rumyantsev
,
A.
Popovich
, and
M.
Maximov
, in
Proceedings 12th International Conference on Nanomaterials - Research & Application (Nanocon)
, Brno, 21–23 Oct. 2020 (Tanger Ltd., Ostrava-Zabreh,
2020
), pp.
196
201
.
70.
M. C.
Biesinger
,
B. P.
Payne
,
A. P.
Grosvenor
,
L. W. M.
Lau
,
A. R.
Gerson
, and
R. S. C.
Smart
,
Appl. Surf. Sci.
257
,
2717
(
2011
).
71.
M. C.
Biesinger
,
B. P.
Payne
,
L. W. M.
Lau
,
A.
Gerson
, and
R. S. C.
Smart
,
Surf. Interface Anal.
41
,
324
(
2009
).
72.
D.
Cabrera-German
,
G.
Gomez-Sosa
, and
A.
Herrera-Gomez
,
Surf. Interface Anal.
48
,
252
(
2016
).
73.
A. P.
Grosvenor
,
M. C.
Biesinger
,
R. S. C.
Smart
, and
N. S.
McIntyre
,
Surf. Sci.
600
,
1771
(
2006
).
74.
T.-C.
Chang
,
Y.-T.
Lu
,
C.-H.
Lee
,
J. K.
Gupta
,
L. J.
Hardwick
,
C.-C.
Hu
, and
H.-Y. T.
Chen
,
ACS Omega
6
,
9692
(
2021
).
75.
P. F.
Ndione
et al,
Adv. Funct. Mater.
24
,
610
(
2014
).
76.
V.
Stevanović
,
M.
dˊAvezac
, and
A.
Zunger
,
J. Am. Chem. Soc.
133
,
11649
(
2011
).
77.
K.
Baraik
et al,
RSC Adv.
10
,
43497
(
2020
).
78.
C. F.
Windisch
,
K. F.
Ferris
,
G. J.
Exarhos
, and
S. K.
Sharma
,
Thin Solid Films
420–421
,
89
(
2002
).
79.
C. F.
Windisch
,
G. J.
Exarhos
, and
R. R.
Owings
,
J. Appl. Phys.
95
,
5435
(
2004
).
80.
A.
Marshall
,
B.
Børresen
,
G.
Hagen
,
M.
Tsypkin
, and
R.
Tunold
,
Mater. Chem. Phys.
94
,
226
(
2005
).
81.
T. M.
Roffi
,
K.
Uchida
, and
S.
Nozaki
,
J. Cryst. Growth
414
,
123
(
2015
).
82.
M.
Yu
,
E.
Budiyanto
, and
H.
Tüysüz
,
Angew. Chemie Int. Ed.
61
,
e202103824
(
2022
).
83.
R. T. M.
van Limpt
,
M.
Lavorenti
,
M. A.
Verheijen
,
M. N.
Tsampas
, and
M.
Creatore
, (
2023
). “,”
Zenodo
.
Published open access through an agreement with Cooperatie SURF UA 100566

Supplementary Material

You do not currently have access to this content.