Small-molecule inhibitors have recently been introduced for passivation during area-selective deposition (ASD). Small silanes like (N,N-dimethylamino)trimethylsilane (DMATMS) selectively react with −OH sites on SiO2 to form a less reactive –OSi(CH3)3 terminated surface. The –OSi(CH3)3 surface termination can inhibit many atomic layer deposition (ALD) processes, including TiCl4/H2O ALD. However, the mechanisms by which ALD is inhibited and by which selectivity is eventually lost are not well understood. This study uses in situ Fourier-transform infrared spectroscopy to probe the adsorption of DMATMS on SiO2 and the subsequent reactions when the passivated surface is exposed to TiCl4/H2O ALD. The chemisorption of DMATMS on isolated –OH groups on SiO2 is shown to inhibit the reaction with TiCl4. Further, we find that starting with an inherently inhibiting H-terminated Si surface, DMATMS can also react with residual –OH groups and reduce the extent of nucleation. Finally, using Rutherford backscattering spectrometry, the effectiveness of DMATMS passivation on SiO2 and H-terminated Si is quantified during extended ALD cycle numbers. The insight into the mechanisms of passivation by DMATMS and passivation loss can enable the rational design of highly selective ASD processes by carefully matching compatible surfaces, passivating agents, and ALD precursors.

1.
A. J. M.
Mackus
,
M. J. M.
Merkx
, and
W. M. M.
Kessels
,
Chem. Mater.
31
,
2
(
2019
).
2.
G. N.
Parsons
and
R. D.
Clark
,
Chem. Mater.
32
,
4920
(
2020
).
3.
J.
Yarbrough
,
A. B.
Shearer
, and
S. F.
Bent
,
J. Vac. Sci. Technol. A
39
,
021002
(
2021
).
4.
F. S. M.
Hashemi
,
C.
Prasittichai
, and
S. F.
Bent
,
J. Phys. Chem. C
118
,
10957
(
2014
).
5.
F. S.
Minaye Hashemi
,
B. R.
Birchansky
, and
S. F.
Bent
,
ACS Appl. Mater. Interfaces
8
,
33264
(
2016
).
6.
L.
Lecordier
,
S.
Herregods
, and
S.
Armini
,
J. Vac. Sci. Technol. A
36
,
031605
(
2018
).
7.
M.
Pasquali
,
S.
Sergeant
,
T.
Conard
,
V.
Spampinato
,
A.
Viva
,
S.
De Gendt
, and
S.
Armini
,
ACS Appl. Electron. Mater.
3
,
2622
(
2021
).
8.
H. P.
Chen
et alet al,
Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM)
, San Francisco, CA, 11–16 December 2021 (IEEE, New York, 2021).
9.
A.
Mameli
,
M. J. M.
Merkx
,
B.
Karasulu
,
F.
Roozeboom
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
ACS Nano
11
,
9303
(
2017
).
10.
J.
Soethoudt
,
H.
Hody
,
V.
Spampinato
,
A.
Franquet
,
B.
Briggs
,
B. T.
Chan
, and
A.
Delabie
,
Adv. Mater. Interfaces
6
,
1900896
(
2019
).
11.
J. J.
Fripiat
,
J.
Uytterhoeven
,
U.
Schobinger
, and
H.
Deuel
,
Helv. Chim. Acta
23
, 176 (
1960
).
12.
R.
Khan
et al,
Chem. Mater.
30
,
7603
(
2018
).
13.
J.-W. J.
Clerix
,
E. A.
Marques
,
J.
Soethoudt
,
F.
Grillo
,
G.
Pourtois
,
J. R.
Van Ommen
, and
A.
Delabie
,
Adv. Mater. Interfaces
8
, 2100846 (
2021
).
14.
J.
Soethoudt
,
F.
Grillo
,
E. A.
Marques
,
J. R.
van Ommen
,
Y.
Tomczak
,
L.
Nyns
,
S.
Van Elshocht
, and
A.
Delabie
,
Adv. Mater. Interfaces
5
,
1800870
(
2018
).
15.
J.
Soethoudt
,
Y.
Tomczak
,
B.
Meynaerts
,
B. T.
Chan
, and
A.
Delabie
,
J. Phys. Chem. C
124
,
7163
(
2020
).
16.
Y.
Au
,
Y.
Lin
,
H.
Kim
,
E.
Beh
,
Y.
Liu
, and
R. G.
Gordon
,
J. Electrochem. Soc.
157
,
D341
(
2010
).
17.
F.
Grillo
,
J.
Soethoudt
,
E. A.
Marques
,
L.
de Martin
,
K.
Van Dongen
,
J. R.
Van Ommen
, and
A.
Delabie
,
Chem. Mater.
32
,
9560
(
2020
).
18.
W.
Xu
,
M. G. N.
Haeve
,
P. C.
Lemaire
,
K.
Sharma
,
D. M.
Hausmann
, and
S.
Agarwal
,
Langmuir
38
,
652
(
2022
).
19.
W.
Xu
,
R. J.
Gasvoda
,
P. C.
Lemaire
,
K.
Sharma
,
D. M.
Hausmann
, and
S.
Agarwal
,
J. Vac. Sci. Technol. A
40
, 012403 (
2022
).
20.
R. A.
Nye
,
K.
Van Dongen
,
H.
Oka
,
D.
De Simone
,
G. N.
Parsons
, and
A.
Delabie
,
J. Micro/Nanopatterning, Mater., Metrol.
21
,
041407
(
2022
).
21.
M. J. M.
Merkx
et al,
J. Phys. Chem. C
126
,
4845
(
2022
).
22.
J.
Yarbrough
,
F.
Pieck
,
D.
Grigjanis
,
I.-K.
Oh
,
P.
Maue
,
R.
Tonner-Zech
, and
S. F.
Bent
,
Chem. Mater.
34
,
4646
(
2022
).
23.
M. J. M.
Merkx
,
R. G. J.
Jongen
,
A.
Mameli
,
P. C.
Lemaire
,
K.
Sharma
,
D. M.
Hausmann
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
J. Vac. Sci. Technol. A
39
, 012402 (
2021
).
24.
R. A.
Nye
,
S. K.
Song
,
K.
Van Dongen
,
A.
Delabie
, and
G. N.
Parsons
,
Appl. Phys. Lett.
121
, 082102 (
2022
).
25.
H.
Saare
,
G.
Dianat
, and
G. N.
Parsons
,
J. Phys. Chem. C
126
,
7036
(
2022
).
26.
B.
Gong
,
Q.
Peng
, and
G. N.
Parsons
,
J. Phys. Chem. B
115
,
5930
(
2011
).
27.
B.
Gong
and
G. N.
Parsons
,
J. Mater. Chem.
22
,
15672
(
2012
).
28.
D. B.
Mawhinney
,
J. A.
Glass
, and
J. T.
Yates
,
J. Phys. Chem. B
101
,
1202
(
1997
).
29.
J. B.
Kinney
and
R. H.
Staley
,
J. Phys. Chem.
87
,
3735
(
1983
).
30.
L. T.
Zhuravlev
and
V. V.
Potapov
,
Russ. J. Phys. Chem.
80
,
1119
(
2006
).
31.
P. J.
Launer
and
B.
Arkles
,
Silicon Compounds Silanes & Silicones
(
Gelest, Inc.
,
Morrisville
,
2013
), pp.
175
178
.
32.
S. E.
Atanasov
, Selective Growth and Organic/Inorganic Materials Integration by Atomic and Molecular Layer Deposition (
North Carolina State University
, Raleigh, NC,
2015
).
33.
A. R.
Chowdhuri
,
C. G.
Takoudis
,
R. F.
Klie
, and
N. D.
Browning
,
Appl. Phys. Lett.
80
,
4241
(
2002
).
34.
B. B.
Burton
,
S. W.
Kang
,
S. W.
Rhee
, and
S. M.
George
,
J. Phys. Chem. C
113
,
8249
(
2009
).
35.
A. B. D.
Nandiyanto
,
R.
Oktiani
, and
R.
Ragadhita
,
Indones. J. Sci. Technol.
4
,
97
(
2019
).
36.
S.
Haukka
,
E. L.
Lakomaa
, and
A.
Root
,
J. Phys. Chem.
97
,
5085
(
1993
).
37.
K.
Bernal Ramos
,
G.
Clavel
,
C.
Marichy
,
W.
Cabrera
,
N.
Pinna
, and
Y. J.
Chabal
,
Chem. Mater.
25
,
1706
(
2013
).
38.
R. L.
Puurunen
,
Chem. Vap. Depos.
11
,
79
(
2005
).
39.
G. N.
Parsons
,
J. Vac. Sci. Technol. A
37
,
020911
(
2019
).
40.
H.
Saare
,
S. K.
Song
,
J.-S.
Kim
, and
G. N.
Parsons
,
J. Appl. Phys.
128
,
105302
(
2020
).
41.
S. K.
Song
,
H.
Saare
, and
G. N.
Parsons
,
Chem. Mater.
31
,
4793
(
2019
).
42.
R.
Becerra
,
J. P.
Cannady
, and
R.
Walsh
,
Phys. Chem. Chem. Phys.
15
,
5530
(
2013
).
43.
R.
Rodriguez
,
Y.
Contie
,
R.
Nougué
,
A.
Baceiredo
,
N.
Saffon-Merceron
,
J.-M.
Sotiropoulos
, and
T.
Kato
,
Angew. Chem.
128
,
14567
(
2016
).
44.
A.
Ermolieff
,
F.
Martin
,
A.
Amouroux
,
S.
Marthon
, and
J. F. M.
Westendorp
,
Semicond. Sci. Technol.
6
,
98
(
1991
).
45.
S.
Jayachandran
et al,
Appl. Surf. Sci.
324
,
251
(
2015
).
46.
M. K.
Ghosh
and
C. H.
Choi
,
Chem. Phys. Lett.
461
,
249
(
2008
).
47.
M. L.
Wise
,
O.
Sneh
,
L. A.
Okada
, and
S. M.
George
,
Surf. Sci.
364
,
367
(
1996
).
48.
G.-Y.
Fang
,
L.-N.
Xu
,
L.-G.
Wang
,
Y.-Q.
Cao
,
D.
Wu
, and
A.-D.
Li
,
Nanoscale Res. Lett.
10
,
68
(
2015
).
49.
S.
Rivillon
,
R. T.
Brewer
, and
Y. J.
Chabal
,
Appl. Phys. Lett.
87
,
173118
(
2005
).
50.
G. S.
Higashi
,
Y. J.
Chabal
,
G. W.
Trucks
, and
K.
Raghavachari
,
Appl. Phys. Lett.
56
,
656
(
1990
).
51.
P. C.
Lemaire
and
G. N.
Parsons
,
Chem. Mater.
29
,
6653
(
2017
).
52.
S. K.
Song
,
J.-S.
Kim
,
H. R. M.
Margavio
, and
G. N.
Parsons
,
ACS Nano
15
,
12276
(
2021
).
53.
S. M.
George
and
Y.
Lee
,
ACS Nano
10
,
4889
(
2016
).
54.
Y.
Lee
,
C.
Huffman
, and
S. M.
George
,
Chem. Mater.
28
,
7657
(
2016
).
55.
J.
Soethoudt
,
S.
Crahaij
,
T.
Conard
, and
A.
Delabie
,
J. Mater. Chem. C
7
,
11911
(
2019
).
56.
H.
Bender
,
S.
Verhaverbeke
,
M.
Caymax
,
O.
Vatel
, and
M. M.
Heyns
,
J. Appl. Phys.
75
,
1207
(
1994
).
You do not currently have access to this content.