Vanadium oxide (VOx) compounds feature various polymorphs, including V2O5 and VO2, with attractive temperature-tunable optical and electrical properties. However, to achieve the desired material property, high-temperature post-deposition annealing of as-grown VOx films is mostly needed, limiting its use for low-temperature compatible substrates and processes. Herein, we report on the low-temperature hollow-cathode plasma-enhanced atomic layer deposition (ALD) of crystalline vanadium oxide thin films using tetrakis(ethylmethylamido)vanadium and oxygen plasma as a precursor and coreactant, respectively. To extract the impact of the type of plasma source, VOx samples were also synthesized in an inductively coupled plasma-enhanced ALD reactor. Moreover, we have incorporated in situ Ar-plasma and ex situ thermal annealing to investigate the tunability of VOx structural properties. Our findings confirm that both plasma-ALD techniques were able to synthesize as-grown polycrystalline V2O5 films at 150 °C. Postdeposition thermal annealing converted the as-grown V2O5 films into different crystalline VOx states: V2O3, V4O9, and VO2. The last one, VO2 is particularly interesting as a phase-change material, and the metal-insulator transition around 70 °C has been confirmed using temperature-dependent x-ray diffraction and resistivity measurements.

1.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
2.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
3.
H. Y.
Shih
,
W. H.
Lee
,
W. C.
Kao
,
Y. C.
Chuang
,
R. M.
Lin
,
H. C.
Lin
,
M.
Shiojiri
, and
M. J.
Chen
,
Sci. Rep.
7
,
39717
(
2017
).
4.
M.
Alevli
,
C.
Ozgit
,
I.
Donmez
, and
N.
Biyikli
,
J. Cryst. Growth
335
,
51
(
2011
).
5.
M.
Fang
,
H.
Zhang
,
L.
Sang
,
H.
Cao
,
L.
Yang
,
K.
Ostrikov
,
I.
Levchenko
, and
Q.
Chen
,
Flexible Printed Electron.
2
,
022001
(
2017
).
6.
C.
Ozgit-Akgun
,
E.
Goldenberg
,
A. K.
Okyay
, and
N.
Biyikli
,
J. Mater. Chem. C
2
,
2123
(
2014
).
7.
J.
Sheng
,
J.
Park
,
D. W.
Choi
,
J.
Lim
, and
J. S.
Park
,
ACS Appl. Mater. Interfaces
8
,
31136
(
2016
).
8.
Z.
Chen
,
H.
Wang
,
X.
Wang
,
P.
Chen
,
Y.
Liu
,
H.
Zhao
,
Y.
Zhao
, and
Y.
Duan
,
Sci. Rep.
7
,
40061
(
2017
).
9.
M.
Alevli
,
C.
Ozgit
,
I.
Donmez
, and
N.
Biyikli
,
Phys. Status Solidi A
209
,
266
(
2012
).
10.
J. A.
van Delft
,
D.
Garcia-Alonso
, and
W. M. M.
Kessels
,
Semicond. Sci. Technol.
27
,
074002
(
2012
).
11.
J.
Schmidt
,
A.
Merkle
,
R.
Brendel
,
B.
Hoex
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Prog. Photovoltaics Res. Appl.
16
,
461
(
2008
).
12.
M.
Xie
,
X.
Sun
,
C.
Zhou
,
A. S.
Cavanagh
,
H.
Sun
,
T.
Hu
,
G.
Wang
,
J.
Lian
, and
S. M.
George
,
J. Electrochem. Soc.
162
,
A974
(
2015
).
13.
Y. S.
Jung
,
P.
Lu
,
A. S.
Cavanagh
,
C.
Ban
,
G.-H.
Kim
,
S.-H.
Lee
,
S. M.
George
,
S. J.
Harris
, and
A. C.
Dillon
,
Adv. Energy Mater.
3
,
213
(
2013
).
14.
A.
Mohammad
,
S.
Ilhom
,
D.
Shukla
, and
N.
Biyikli
,
J. Vac. Sci. Technol. A
40
,
042401
(
2022
).
15.
B. J.
O'Neill
et al,
ACS Catal.
5
,
1804
(
2015
).
16.
J.
Lu
,
J. W.
Elam
, and
P. C.
Stair
,
Acc. Chem. Res.
46
,
1806
(
2013
).
17.
M. A.
Khalily
,
H.
Eren
,
S.
Akbayrak
,
H. H.
Susapto
,
N.
Biyikli
,
S.
Özkar
, and
M. O.
Guler
,
Angew. Chem. Int. Ed.
55
,
12257
(
2016
).
18.
A.
Richter
,
J.
Benick
,
M.
Hermle
, and
S. W.
Glunz
,
Phys. Status Solidi RRL
5
,
202
(
2011
).
19.
A.
Mohammad
,
D.
Shukla
,
S.
Ilhom
,
B.
Willis
,
B.
Johs
,
A. K.
Okyay
, and
N.
Biyikli
,
J. Vac. Sci. Technol. A
37
,
020927
(
2019
).
20.
B. J.
Kim
et al,
Energy Environ. Sci.
8
,
916
(
2015
).
21.
J.
Sheng
,
K.-L.
Han
,
T. H.
Hong
,
W.-H.
Choi
, and
J.-S.
Park
,
J. Semicond.
39
,
011008
(
2018
).
22.
A.
Mohammad
,
D.
Shukla
,
S.
Ilhom
,
B.
Willis
,
A. K.
Okyay
, and
N.
Biyikli
,
Int. J. High Speed Electron. Syst.
28
,
1940020
(
2019
).
23.
Y.
Liu
,
M.
Clark
,
Q.
Zhang
, D. Yu, D. Liu, J. Liu, and
G.
Cao
,
Adv. Energy Mater.
1
,
194
(
2011
).
24.
K.
Schneider
,
M.
Lubecka
, and
A.
Czapla
,
Sens. Actuators, B
236
,
970
(
2016
).
25.
M.
Li
et al,
AIP Adv.
12
,
055203
(
2022
).
26.
M.
Tian
,
R.
Li
,
C.
Liu
,
D.
Long
, and
G.
Cao
,
ACS Appl. Mater. Interfaces
11
,
15573
(
2019
).
27.
Q.
Meng
,
K.
Cai
,
Y.
Chen
, and
L.
Chen
,
Nano Energy
36
,
268
(
2017
).
28.
S. D.
Perera
,
B.
Patel
,
J.
Bonso
,
M.
Grunewald
,
J. P.
Ferraris
, and
K. J.
Balkus
, Jr.,
ACS Appl. Mater. Interfaces
3
,
4512
(
2017
).
29.
J.
Yang
,
T.
Lan
,
J.
Liu
,
Y.
Song
, and
M.
Wei
,
Electrochim. Acta
105
,
489
(
2013
).
30.
Y.
Zhang
,
J.
Zheng
,
Y.
Zhao
,
T.
Hu
,
Z.
Gao
, and
C.
Meng
,
Appl. Surf. Sci.
377
,
385
(
2016
).
31.
M.
Panagopoulou
,
D.
Vernardou
,
E.
Koudoumas
,
N.
Katsarakis
,
D.
Tsoukalas
, and
Y. S.
Raptis
,
J. Phys. Chem. C
121
,
70
(
2017
).
32.
A. M.
Andersson
,
C. G.
Granqvist
, and
J. R.
Stevens
,
Appl. Opt.
28
,
3295
(
1989
).
33.
D. T.
Gillaspie
,
R. C.
Tenent
, and
A. C.
Dillon
,
J. Mater. Chem.
20
,
9585
(
2010
).
34.
G.
Stefanovich
,
A.
Pergament
, and
D.
Stefanovich
,
J. Phys.: Condens. Matter
12
,
8837
(
2000
).
35.
L. A.
Gea
and
L. A.
Boatner
,
Appl. Phys. Lett.
68
,
3081
(
1996
).
36.
C. G.
Granqvist
,
P. C.
Lansåker
,
N. R.
Mlyuka
,
G. A.
Niklasson
, and
E.
Avendaño
,
Sol. Energy Mater. Sol. Cells
93
,
2032
(
2009
).
37.
C. G.
Granqvist
,
S.
Green
,
G. A.
Niklasson
,
N. R.
Mlyuka
,
S.
von Kræmer
, and
P.
Georén
,
Thin Solid Films
518
,
3046
(
2010
).
38.
T.
Driscoll
et al,
Appl. Phys. Lett.
93
,
024101
(
2008
).
39.
T.
Driscoll
et al,
Science
325
,
1518
(
2009
).
40.
P. A.
Premkumar
,
M.
Toeller
,
I. P.
Radu
,
C.
Adelmann
,
M.
Schaekers
,
J.
Meersschaut
,
T.
Conard
, and
S. V.
Elshocht
,
ECS J. Solid State Sci. Technol.
1
,
P169
(
2012
).
41.
X.
Wang
,
Z.
Guo
,
Y.
Gao
, and
J.
Wang
,
J. Mater. Res.
32
,
37
(
2017
).
42.
V. P.
Prasadam
,
B.
Dey
,
S.
Bulou
,
T.
Schenk
, and
N.
Bahlawane
,
Mater. Today Chem.
12
,
332
(
2019
).
43.
J.
Musschoot
,
D.
Deduytsche
,
H.
Poelman
,
J.
Haemers
,
R. L.
Van Meirhaeghe
,
S.
Van den Berghe
, and
C.
Detavernier
,
J. Electrochem. Soc.
156
,
P122
(
2009
).
44.
I. I.
Kazadojev
,
Growth of V2O5 Films for Electrochromic and Battery Applications
(
The National University of Ireland
,
Cork
,
2018
).
45.
K.
Schneider
,
J. Mater. Sci.: Mater. Electron.
31
,
10478
(
2020
).
46.
J.
Musschoot
,
D.
Deduytsche
,
H.
Poelman
,
J.
Haemers
,
R.
Vanmeirhaeghe
,
S.
Van den Berghe
, and
C.
Detavernier
,
J. Electrochem. Soc.
156
,
P122
(
2009
).
47.
Q.
Shi
,
W.
Huang
,
J.
Yan
,
Y.
Zhang
,
M.
Mao
,
Y.
Zhang
,
Y.
Xu
, and
Y.
Zhang
,
J. Sol-Gel Sci. Technol.
59
,
591
(
2011
).
48.
S. H.
Lee
,
P.
Liu
, and
C. E.
Tracy
,
Electrochem. Solid-State Lett.
6
,
A275
(
2003
).
49.
Z.
Tarnawski
,
K.
Zakrzewska
,
N. T. H.
Kim-Ngan
,
M.
Krupska
,
S.
Sowa
,
K.
Drogowska
,
L.
Havela
, and
A. G.
Balogh
,
Acta Phys. Pol. A
128
,
431
(
2015
).
50.
W. C.
Kao
,
W. H.
Lee
,
S. H.
Yi
,
T. H.
Shen
,
H. C. L.
and M
, and
J.
Chen
,
RSC Adv.
9
,
12226
(
2019
).
51.
G. Y.
Song
,
C.
Oh
,
S.
Sinha
,
J.
Son
, and
J.
Heo
,
ACS Appl. Mater. Interfaces
9
,
23909
(
2017
).
52.
T.
Cottre
,
M.
Fingerle
,
M.
Kranz
,
T.
Mayer
,
B.
Kaiser
, and
W.
Jaegermann
,
Adv. Mater. Interfaces
8
,
2002257
(
2021
).
53.
H. S.
Casalongue
,
S.
Kaya
,
V.
Viswanathan
,
D. J.
Miller
,
D.
Friebel
,
H. A.
Hansen
,
J. K.
Nørskov
,
A.
Nilsson
, and
H.
Ogasawara
,
Nat Commun.
4
,
2817
(
2013
).
54.
Y.
Zhang
,
W.
Xiong
,
W.
Chen
, and
Y.
Zheng
,
Nanomaterials
11
,
338
(
2021
).
55.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002383 for real-time in situ ellipsometry recorded 150 cycles HCP-ALD grown VOx thin film thickness data at 100, 150, 200, and 250 °C.

Supplementary Material

You do not currently have access to this content.