This work consists of optimizing TiN plasma-enhanced atomic layer deposition using two different N-sources: NH 3 and N 2. In addition to maximizing the growth per cycle (GPC) and to shorten the deposition duration, comprehensive in situ and ex situ physicochemical characterizations give valuable information about the influence of the N-source nature, their dilution in Ar, and the plasma power on layer’s final properties. N 2 and NH 3 dilutions within Ar are extensively investigated since they are critical to decreasing the mean free path ( ℓ) of plasma-activated species. A 1:1 gas ratio for the N-sources:Ar mixture associated with low flows (20 sccm) is optimal values for achieving highest GPCs (0.8 Å/cycle). Due to lower reactivity and shorter ℓ of the excited species, N 2 plasma is more sensitive to power and generator-to-sample distance, and this contributes to lower conformality than with NH 3 plasma. The resistivity of the initial amorphous films was high ( ≥ 1000 μ Ω  cm) and was significantly reduced after thermal treatment ( ≤ 400 μ Ω cm). This demonstrates clearly the beneficial effect of the crystallinity of the film conductivity. Though N 2 process appears slightly slower than the NH 3 one, it leads to an acceptable film quality. It should be considered since it is nonharmful, and the process could be further improved by using a reactor exhibiting optimized geometry.

1.
H. C. M.
Knoops
,
L.
Baggetto
,
E.
Langereis
,
M. C. M.
van de Sanden
,
J. H.
Klootwijk
,
F.
Roozeboom
,
R. A. H.
Niessen
,
P. H. L.
Notten
, and
W. M. M.
Kessels
,
J. Electrochem. Soc.
155
,
G287
(
2008
).
2.
M.-D.
Cheng
,
T.
Luoh
,
C.-T.
Su
,
T.-H.
Yang
,
K.-C.
Chen
, and
C.-Y.
Lu
,
Thin Solid Films
518
,
2285
(
2010
).
3.
A.
Shearrow
,
G.
Koolstra
,
S. J.
Whiteley
,
N.
Earnest
,
P. S.
Barry
,
F. J.
Heremans
,
D. D.
Awschalom
,
E.
Shirokoff
, and
D. I.
Schuster
,
Appl. Phys. Lett.
113
,
212601
(
2018
).
4.
J.-Z.
Kong
,
P.
Xu
,
Y.-Q.
Cao
,
A.-D.
Li
,
Q.-Z.
Wang
, and
F.
Zhou
,
Surf. Coat. Technol.
381
,
125108
(
2020
).
5.
P.
Banerjee
,
I.
Perez
,
L.
Henn-Lecordier
,
S. B.
Lee
, and
G. W.
Rubloff
,
Nat. Nanotechnol.
4
,
292
(
2009
).
6.
Y.
Gao
,
J.
Park
, and
X.
Liang
,
J. Electrochem. Soc.
165
,
A3871
(
2018
).
7.
D.
Fomra
,
M.
Mamun
,
K.
Ding
,
V.
Avrutin
,
Ü.
Özgür
, and
N.
Kinsey
,
Opt. Express
29
,
19586
(
2021
).
8.
M.
Leskelä
and
M.
Ritala
,
Thin Solid Films
409
,
138
(
2002
).
9.
R. W.
Johnson
,
A.
Hultqvist
, and
S. F.
Bent
,
Mater. Today
17
,
236
(
2014
).
10.
A. S.
Asundi
,
J. A.
Raiford
, and
S. F.
Bent
,
ACS Energy Lett.
4
,
908
(
2019
).
11.
M.
Ritala
,
M.
Leskelä
,
E.
Rauhala
, and
J.
Jokinen
,
J. Electrochem. Soc.
145
,
2914
(
1998
).
12.
C. H.
Ahn
,
S. G.
Cho
,
H. J.
Lee
,
K. H.
Park
, and
S. H.
Jeong
,
Met. Mater. Int.
7
,
621
(
2001
).
13.
M.
Sowińska
,
S.
Brizzi
,
C.
Das
,
I.
Kärkkänen
,
J.
Schneidewind
,
F.
Naumann
,
H.
Gargouri
,
K.
Henkel
, and
D.
Schmeißer
,
Appl. Surf. Sci.
381
,
42
(
2016
).
14.
J.-S.
Min
,
Y.-W.
Son
,
W.-G.
Kang
,
S.-S.
Chun
, and
S.-W.
Kang
,
Jpn. J. Appl. Phys.
37
,
4999
(
1998
).
15.
L. A.
Okada
and
S. M.
George
,
Appl. Surf. Sci.
137
,
113
(
1999
).
16.
J.-Y.
Yun
,
J. Electrochem. Soc.
146
,
1804
(
1999
).
17.
P.
Caubet
, et al. ,
J. Electrochem. Soc.
155
,
H625
(
2008
).
18.
Y. A.
Wasslen
,
E.
Tois
,
S.
Haukka
,
K. A.
Kreisel
,
G. P. A.
Yap
,
M. D.
Halls
, and
S. T.
Barry
,
Inorg. Chem.
49
,
1976
(
2010
).
19.
Z.
Chen
,
X.
Li
,
W.-M.
Li
, and
G.-Q.
Lo
,
MATEC Web Conf.
39
,
01010
(
2016
).
20.
J.
Elam
,
M.
Schuisky
,
J.
Ferguson
, and
S.
George
,
Thin Solid Films
436
,
145
(
2003
).
21.
F.
Fillot
,
T.
Morel
,
S.
Minoret
,
I.
Matko
,
S.
Maîtrejean
,
B.
Guillaumot
,
B.
Chenevier
, and
T.
Billon
,
Microelectron. Eng.
82
,
248
(
2005
).
22.
A.
Dube
,
M.
Sharma
,
P. F.
Ma
,
P. A.
Ercius
,
D. A.
Muller
, and
J. R.
Engstrom
,
J. Phys. Chem. C
111
,
11045
(
2007
).
23.
D.
Longrie
,
D.
Deduytsche
,
J.
Haemers
,
P. F.
Smet
,
K.
Driesen
, and
C.
Detavernier
,
ACS Appl. Mater. Interfaces
6
,
7316
(
2014
).
24.
D.
Alvarez
,
J.
Spiegelman
,
R.
Holmes
,
K.
Andachi
,
M.
Raynor
, and
H.
Shimizu
,
ECS Trans.
77
,
219
(
2017
).
25.
A.
Haider
,
S.
Kizir
, and
N.
Biyikli
,
AIP Adv.
6
,
045203
(
2016
).
26.
K.-H.
Kim
,
N.-W.
Kwak
, and
S. H.
Lee
,
Electron. Mater. Lett.
5
,
83
(
2009
).
27.
H.-S.
Chung
,
J.-D.
Kwon
, and
S.-W.
Kang
,
J. Electrochem. Soc.
153
,
C751
(
2006
).
28.
E.
Langereis
,
H. C. M.
Knoops
,
A. J. M.
Mackus
,
F.
Roozeboom
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
102
,
083517
(
2007
).
29.
N.
Leick
,
J. M.
Huijs
,
R. A.
Ovanesyan
,
D. M.
Hausmann
, and
S.
Agarwal
,
Plasma Process. Polym.
16
,
1900032
(
2019
).
30.
I.
Krylov
,
V.
Korchnoy
,
X.
Xu
,
K.
Weinfeld
,
E.
Yalon
,
D.
Ritter
, and
M.
Eizenberg
,
J. Appl. Phys.
128
,
065301
(
2020
).
31.
J. Y.
Kim
,
Y.
Kim
, and
H.
Jeon
,
Jpn. J. Appl. Phys.
42
,
L414
(
2003
).
32.
E.
Langereis
,
S. B. S.
Heil
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
100
,
023534
(
2006
).
33.
J.
Musschoot
,
Q.
Xie
,
D.
Deduytsche
,
S.
Van den Berghe
,
R.
Van Meirhaeghe
, and
C.
Detavernier
,
Microelectron. Eng.
86
,
72
(
2009
).
34.
N.
Samal
,
H.
Du
,
R.
Luberoff
,
K.
Chetry
,
R.
Bubber
,
A.
Hayes
, and
A.
Devasahayam
,
J. Vac. Sci. Technol. A
31
,
01A137
(
2013
).
35.
M.
Burke
,
A.
Blake
,
I. M.
Povey
,
M.
Schmidt
,
N.
Petkov
,
P.
Carolan
, and
A. J.
Quinn
,
J. Vac. Sci. Technol. A
32
,
031506
(
2014
).
36.
M.
Sowińska
,
K.
Henkel
,
D.
Schmeißer
,
I.
Kärkkänen
,
J.
Schneidewind
,
F.
Naumann
,
B.
Gruska
, and
H.
Gargouri
,
J. Vac. Sci. Technol. A
34
,
01A127
(
2016
).
37.
I.
Krylov
,
X.
Xu
,
E.
Zoubenko
,
K.
Weinfeld
,
S.
Boyeras
,
F.
Palumbo
,
M.
Eizenberg
, and
D.
Ritter
,
J. Vac. Sci. Technol. A
36
,
06A105
(
2018
).
38.
I.
Krylov
,
E.
Zoubenko
,
K.
Weinfeld
,
Y.
Kauffmann
,
X.
Xu
,
D.
Ritter
, and
M.
Eizenberg
,
J. Vac. Sci. Technol. A
36
,
051505
(
2018
).
39.
S.
Belahcen
,
C.
Vallée
,
A.
Bsiesy
,
A.
Chaker
,
M.
Jaffal
,
T.
Yeghoyan
, and
M.
Bonvalot
,
J. Vac. Sci. Technol. A
39
,
012410
(
2021
).
40.
S.-H.
Kwon
,
O.-K.
Kwon
,
J.-S.
Min
, and
S.-W.
Kang
,
J. Electrochem. Soc.
153
,
G578
(
2006
).
41.
H. C. M.
Knoops
,
T.
Faraz
,
K.
Arts
, and
W. M. M.
E. Kessels
,
J. Vac. Sci. Technol. A
37
,
030902
(
2019
).
42.
C.
Vallée
, et al. ,
J. Vac. Sci. Technol. A
38
,
033007
(
2020
).
43.
I.
Krylov
,
X.
Xu
,
Y.
Qi
,
K.
Weinfeld
,
V.
Korchnoy
,
M.
Eizenberg
, and
D.
Ritter
,
J. Vac. Sci. Technol. A
37
,
060905
(
2019
).
44.
L.
Assaud
,
K.
Pitzschel
,
M.
Hanbücken
, and
L.
Santinacci
,
ECS J. Solid State Sci. Technol.
3
,
P253
(
2014
).
45.
T.
Defforge
,
M.
Diatta
,
D.
Valente
,
F.
Tran-Van
, and
G.
Gautier
,
J. Electrochem. Soc.
160
,
H247
(
2013
).
46.
M.
Dufond
, et al. ,
Chem. Mater.
32
,
1393
(
2020
).
47.
P.
Roy
,
C.
Badie
,
J.-B.
Claude
,
A.
Barulin
,
A.
Moreau
,
J.
Lumeau
,
M.
Abbarchi
,
L.
Santinacci
, and
J.
Wenger
,
ACS Appl. Nano Mater.
4
,
7199
(
2021
).
48.
R. W. B.
Pearse
and
A. G.
Gaydon
,
The Identification of Molecular Spectra
,
4th edition
(
Chapman & Hall
,
1976
), pp.
1
407
.
49.
A. J. M.
Mackus
,
S. B. S.
Heil
,
E.
Langereis
,
H. C. M.
Knoops
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
28
,
77
(
2010
).
50.
E. H.
Lock
,
R. F.
Fernsler
,
S.
Slinker
, and
S. G.
Walton
, “Experimental and theoretical estimation of excited species generation in pulsed electron beam–generated plasmas produced in pure argon, nitrogen, oxygen, and their mixtures,” Memorandum Report No. 6750-11-9333, 2011.
51.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
29
,
050801
(
2011
).
52.
C.
Detavernier
,
J.
Dendooven
,
D.
Deduytsche
, and
J.
Musschoot
,
ECS Trans.
16
,
239
(
2008
).
53.
D.
Gall
,
R. T.
Haasch
,
N.
Finnegan
,
T.-Y.
Lee
,
C.-S.
Shin
,
E.
Sammann
,
J. E.
Greene
, and
I.
Petrov
,
Surf. Sci. Spectra
7
,
167
(
2000
).
54.
U.
Guler
, et al. ,
Adv. Opt. Mater.
5
,
1600717
(
2017
).
55.
H.
Alhussain
,
T.
Mise
,
Y.
Matsuo
,
H.
Kiyono
,
K.
Nishikiori
, and
T.
Akashi
,
J. Ceram. Soc. Jpn.
127
,
824
(
2019
).
56.
S. G.
Park
and
D.-H.
Kim
,
Jpn. J. Appl. Phys.
43
,
303
(
2004
).
57.
C.
Ernsberger
,
J.
Nickerson
,
A. E.
Miller
, and
J.
Moulder
,
J. Vac. Sci. Technol. A
3
,
2415
(
1985
).
58.
N. C.
Saha
and
H. G.
Tompkins
,
J. Appl. Phys.
72
,
3072
(
1992
).
59.
J.
Colligon
,
H.
Kheyrandish
,
L.
Lesnevsky
,
A.
Naumkin
,
A.
Rogozin
,
I.
Shkarban
,
L.
Vasilyev
, and
V.
Yurasova
,
Surf. Coat. Technol.
70
,
9
(
1994
).
60.
M.
Krawczyk
,
W.
Lisowski
,
J. W.
Sobczak
,
A.
Kosiński
, and
A.
Jablonski
,
J. Alloys Compd.
546
,
280
(
2013
).
61.
N. K.
Ponon
,
D. J.
Appleby
,
E.
Arac
,
P.
King
,
S.
Ganti
,
K. S.
Kwa
, and
A.
O’Neill
,
Thin Solid Films
578
,
31
(
2015
).
62.
K.
Hansen
,
M.
Cardona
,
A.
Dutta
, and
C.
Yang
,
Materials
13
,
1058
(
2020
).
63.
Y.
Liu
,
Y.
Wang
,
Y.
Zhang
,
Z.
You
, and
X.
Lv
,
J. Am. Ceram. Soc.
103
,
3905
(
2020
).
64.
H. O.
Pierson
,
Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications
(
William Andrew
,
Westwood, USA
,
1996
).
65.
Z.
Lin
,
G.
Zhan
,
X.
Wang
,
M.
You
,
B.
Yang
,
X.
Chen
,
W.
Zhang
, and
J.
Liu
,
Semicond. Sci. Technol.
33
,
A398
(
2018
).
66.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002288 for additional process optimization data and characterizations.

Supplementary Material

You do not currently have access to this content.