In this work, the optical properties of pure and doped films were investigated as a function of annealing temperature. Films with compositions Ni0.5Zn0.5Fe2O4, Ni0.35Cu0.2Zn0.45Fe2O4, and Ni0.35Co0.2Zn0.45Fe2O4 were deposited on quartz substrate using the sol–gel method. The grown films were annealed at 500 and 800 °C in a rapid thermal annealing furnace. The single-phase spinel structure of these films was confirmed by x-ray diffraction (XRD) results. The average crystallite size calculated from the XRD data was observed to increase with the annealing temperature and decrease for films doped with Cu and Co. The lattice constant was observed to decrease with the annealing temperature and increase for films doped with Cu and Co. The cross-sectional images obtained from field emission scanning electron microscope were used to calculate the thickness of these films. Ultraviolet-visible spectroscopy was used to obtain the absorbance spectra as a function of wavelength in the range of 200–800 nm. The bandgap obtained from the absorbance spectra was seen to decrease for films annealed at higher temperatures for pure and doped films. Furthermore, the bandgap of doped films was seen to decrease in comparison to that of pure films. Optical parameters such as refractive index, extinction coefficient, optical conductivity, and real and imaginary parts of the dielectric constant were observed to increase with the reduction in the bandgap.

1.
G.
Rana
,
P.
Dhiman
,
A.
Kumar
,
D. V. N.
Vo
,
G.
Sharma
,
S.
Sharma
, and
M.
Naushad
,
Chem. Eng. Res. Des.
175
,
182
(
2021
).
2.
Rachna
,
N. B.
Singh
, and
A.
Agarwal
,
Mater. Today Proc.
5
,
9148
(
2018
).
3.
D. H.
Bang
and
J. Y.
Park
,
IEEE Trans. Magn.
45
,
2762
(
2009
).
4.
S.
Zahi
,
J. Electromagn. Anal. Appl.
02
,
56
(
2010
).
5.
A.
Goldman
,
Modern Ferrite Technology
(
Springer Science & Business Media
,
New York
,
2006
).
6.
Z.
Zheng
,
Y.
Li
,
T.
Liu
, and
Q.
Feng
,
IEEE. Trans. Magn.
54
,
2801404
(
2018
).
7.
P.
Thakur
,
D.
Chahar
,
S.
Taneja
,
N.
Bhalla
, and
A.
Thakur
,
Ceram. Int.
46
,
15740
(
2020
).
8.
S.
Arcaro
and
J.
Venturini
Modern Ferrites in Engineering
, edited by
C. P.
Bergmann
(
Springer
,
New York
,
2021
).
9.
J.
Qiu
,
C.
Wang
, and
M.
Gu
,
Mater. Sci. Eng. B
112
,
1
(
2004
).
10.
N.
Goswami
,
S.
Surendra
, and
S. C.
Katyal
,
J. Laser Opt. Photonics
04
,
2
(
2017
).
11.
C. S.
Pawar
,
M. P.
Gujar
, and
V. L.
Mathe
,
J. Supercond. Novel Magn.
30
,
615
(
2017
).
12.
A. A.
Ibiyemi
,
O.
Akinrinola
, and
G. T.
Yusuf
,
Appl. Phys. A
128
,
792
(
2022
).
13.
V. L. S.
Vatsalya
,
G. S.
Sundari
,
Ch. S. L. N.
Sridhar
,
I. L.
Prasanna
, and
Ch. S.
Lakshmi
,
J. Lumin.
252
,
119314
(
2022
).
14.
D.
Guo
,
X.
Fan
,
G.
Chai
,
C.
Jiang
,
X.
Li
, and
D.
Xue
,
Appl. Surf. Sci.
256
,
2319
(
2010
).
15.
Y.
Liu
,
Y.
Li
,
H.
Zhang
,
D.
Chen
, and
C.
Mu
,
J. Appl. Phys.
109
,
07A511
(
2011
).
16.
R.
Xu
,
L. S.
Wang
,
X. L.
Liu
,
M.
Lei
,
H. Z.
Guo
,
Y.
Chen
,
J. B.
Wang
, and
D. L.
Peng
,
J. Alloys Compd.
604
,
43
(
2014
).
17.
N.
Pachauri
,
B.
Khodadadi
,
A. V.
Singh
,
J. B.
Mohammadi
,
R. L.
Martens
,
P. R.
Leclair
,
C.
Mewes
,
T.
Mewes
, and
A.
Gupta
,
J. Magn. Magn. Mater.
417
,
137
(
2016
).
18.
N.
Li
,
S.
Schafer
,
R.
Datta
,
T.
Mewes
,
T. M.
Klein
, and
A.
Gupta
,
Appl. Phys. Lett.
101
,
132409
(
2012
).
19.
D.
Ravinder
,
K. V.
Kumar
, and
A. V. R.
Reddy
,
Mater. Lett.
57
,
4162
(
2003
).
20.
Y.
Liu
 et al.,
Mater. Res. Bull.
138
,
111214
(
2021
).
21.
S.
Rajarathinam
,
U.
Ganguly
, and
N.
Venkataramani
,
Ceram. Int.
48
,
7876
(
2022
).
22.
Y.
Yusuf
,
R. S.
Azis
,
S.
Kanagesan
, and
G.
Bahmanrokh
,
J. Aust. Ceram. Soc.
53
,
767
(
2017
).
23.
S.
Kotru
,
R.
Paul
, and
J. A.
Abu Qahouq
,
Mater. Chem. Phys.
276
,
125357
(
2022
).
24.
H.
Liu
,
Z.
Yu
,
B.
Fu
,
M.
Ran
,
C.
Wu
,
X.
Jiang
,
R.
Guo
,
Z.
Lan
, and
K.
Sun
,
Ceram. Int.
47
,
1318
(
2021
).
25.
L.
Chao
,
A.
Sharma
,
M. N.
Afsar
,
O.
Obi
,
Z.
Zhou
, and
N.
Sun
,
IEEE Trans. Magn.
48
,
4085
(
2012
).
26.
K.
Sun
,
Y.
Dai
,
Y.
Yang
,
Z.
Yu
,
H.
Liu
,
X.
Jiang
, and
Z.
Lan
,
Ceram. Int.
42
,
3028
(
2016
).
27.
L.
Wu
,
C.
Dong
,
X.
Wang
,
J.
Li
, and
M.
Li
,
J. Alloys Compd.
779
,
794
(
2019
).
28.
M.
Desai
 et al.,
J. Appl. Phys.
91
,
7592
(
2002
).
29.
N.
Gupta
,
A.
Verma
,
S. C.
Kashyap
, and
D. C.
Dube
,
J. Magn. Magn. Mater.
308
,
137
(
2007
).
30.
K.
Rajaram
and
J.
Kim
,
Nano Energy
57
,
317
(
2019
).
31.
R.
Kumar
,
H.
Kumar
,
R. R.
Singh
, and
P. B.
Barman
,
J. Sol-Gel Sci. Technol.
78
,
566
(
2016
).
32.
J.
Xiang
,
X.
Shen
,
F.
Song
, and
M.
Liu
,
J. Solid State Chem.
183
,
1239
(
2010
).
33.
H. J.
Kardile
,
S. B.
Somvanshi
,
A. R.
Chavan
,
A. A.
Pandit
, and
K. M.
Jadhav
,
Optik
207
,
164462
(
2020
).
34.
A. R.
Chavan
,
R. R.
Chilwar
,
P. B.
Kharat
, and
K. M.
Jadhav
,
J. Supercond. Novel Magn.
31
,
2949
(
2018
).
35.
P.
Rao
,
R. V.
Godbole
,
D. M.
Phase
,
R. C.
Chikate
, and
S.
Bhagwat
,
Mater. Chem. Phys.
149–150
,
333
(
2015
).
36.
S. M.
Chavan
,
M. K.
Babrekar
,
S. S.
More
, and
K. M.
Jadhav
,
J. Alloys Compd.
507
,
21
(
2010
).
37.
J. S.
Alzahrani
,
I. H.
Midala
,
H. M.
Kamari
,
N. M.
Al-Hada
,
C. K.
Tim
,
N. N. S.
Nidzam
,
Z. A.
Alrowaili
, and
M. S.
Al-Buriahi
,
J. Inorg. Organomet. Polym. Mater.
32
,
1755
(
2022
).
38.
G.
Dixit
,
J. P.
Singh
,
R. C.
Srivastava
,
H. M.
Agrawal
, and
R. J.
Chaudhary
,
Adv. Mater. Lett.
3
,
21
(
2012
).
39.
Sajjadi
and
S.
Pooyan
,
J. Polym. Eng. Tech.
13
,
38
(
2005
).
40.
A.
Sutka
,
S.
Lagzdina
,
G.
Mezinskis
,
A.
Pludons
,
I.
Vitina
, and
L.
Timma
,
IOP Conf. Ser. Mater. Sci. Eng.
25
,
012019
(
2011
).
41.
S.
Yasmeen
,
F.
Iqbal
,
T.
Munawar
,
M. A.
Nawaz
,
M.
Asghar
, and
A.
Hussain
,
Ceram. Int.
45
,
17859
(
2019
).
42.
S.
Chander
and
M. S.
Dhaka
,
Physica E
80
,
62
(
2016
).
43.
M. K.
Manglam
,
S.
Kumari
,
J.
Mallick
, and
M.
Kar
,
Appl. Phys. A
127
,
138
(
2021
).
44.
G. S. V. R. K.
Choudary
,
P.
Prameela
,
M. C.
Varma
,
A. M.
Kumar
, and
K. H.
Rao
,
Indian J. Mater. Sci.
2013
,
1
(
2013
).
45.
R. D.
Shannon
and
C. T.
Prewitt
,
Acta Crystallogr. Sect. B
25
,
925
(
1969
).
46.
J.
Tauc
Amorphous and Liquid Semiconductors
, edited by
J.
Tauc
(
Springer Science & Business Media
,
New York
,
1974
).
47.
S.
Joshi
,
M.
Kumar
,
S.
Chhoker
,
G.
Srivastava
,
M.
Jewariya
, and
V. N.
Singh
,
J. Mol. Struct.
1076
,
55
(
2014
).
48.
R. B.
Kale
and
C. D.
Lokhande
,
Appl. Surf. Sci.
223
,
343
(
2004
).
49.
M. A.
Humayun
,
M. A.
Rashid
,
F. A.
Malek
, and
A. N.
Hussain
,
J. Russ. Laser Res.
33
,
387
(
2012
).
50.
D.
Sharma
and
N.
Khare
,
Appl. Phys. Lett.
105
,
032404
(
2014
).
51.
M.
Zulqarnain
,
S. S.
Ali
,
U.
Hira
,
J. F.
Feng
,
M. I.
Khan
,
M.
Rizwan
,
K.
Javed
,
G.
Farid
, and
M. S.
Hasan
,
J. Alloys Compd.
894
,
162431
(
2022
).
52.
A.
Sharma
,
K. M.
Batoo
,
O. M.
Aldossary
,
S.
Jindal
,
N.
Aggarwal
, and
G.
Kumar
,
J. Mater. Sci. Mater. Electron.
32
,
313
(
2021
).
53.
K. V.
Kumar
,
Adv. Mater. Phys. Chem.
12
,
33
(
2022
).
54.
55.
V.
Dalouji
and
N.
Rahimi
,
Europhys. Lett.
139
,
45002
(
2022
).
56.
H.
Khmissi
,
S. A.
Mahmoud
, and
A. A.
Akl
,
Optik
227
,
165979
(
2021
).
57.
A. S.
Abouhaswa
and
T. A.
Taha
,
Polym. Bull.
77
,
6005
(
2020
).
You do not currently have access to this content.