There is increasing interest in α-polytype Ga2O3 for power device applications, but there are few published reports on dielectrics for this material. Finding a dielectric with large band offsets for both valence and conduction bands is especially challenging given its large bandgap of 5.1 eV. One option is HfSiO4 deposited by atomic layer deposition (ALD), which provides conformal, low damage deposition and has a bandgap of 7 eV. The valence band offset of the HfSiO4/Ga2O3 heterointerface was measured using x-ray photoelectron spectroscopy. The single-crystal α-Ga2O3 was grown by halide vapor phase epitaxy on sapphire substrates. The valence band offset was 0.82 ± 0.20 eV (staggered gap, type-II alignment) for ALD HfSiO4 on α-Ga0.2O3. The corresponding conduction band offset was −2.72 ± 0.45 eV, providing no barrier to electrons moving into Ga2O3.

1.
E.
Ahmadi
and
Y.
Oshima
,
J. Appl. Phys.
126
,
160901
(
2019
).
2.
Takuya
Maeda
,
Mitsuru
Okigawa
,
Yuji
Kato
,
Isao
Takahashi
, and
Takashi
Shinohe
,
AIP Adv.
10
,
125119
(
2020
).
3.
A.
Hassa
,
P.
Storm
,
M.
Kneiß
,
D.
Splith
,
H.
von Wenckstern
,
M.
Lorenz
, and
M.
Grundmann
,
Phys. Status Solidi B
258
,
2000394
(
2021
).
4.
H.
Zhang
,
L.
Yuan
,
X.
Tang
,
J.
Hu
,
J.
Sun
,
Y.
Zhang
,
Y.
Zhang
, and
R.
Jia
,
IEEE Trans. Power Electron.
35
,
5157
(
2020
).
5.
A. Y.
Polyakov
,
V. I.
Nikolaev
,
E. B.
Yakimov
,
F.
Ren
,
S. J.
Pearton
, and
J.
Kim
,
J. Vac. Sci. Technol. A
40
,
020804
(
2022
).
6.
Zhengpeng
Wang
,
Xuanhu
Chen
,
Fang-Fang
Ren
,
Shulin
Gu
, and
Jiandong
Ye
,
J. Phys. D: Appl. Phys.
54
,
043002
(
2021
).
7.
I.
Cora
,
Z.
Fogarassy
,
R.
Fornari
,
M.
Bosi
,
A.
Rečnik
, and
B.
Pecz
,
Acta Mater.
183
,
216
(
2020
).
8.
A. F. M. A. U.
Bhuiyan
 et al.,
APL Mater.
8
,
031104
(
2020
).
9.
M.
Hilfiker
,
U.
Kilic
,
M.
Stokey
,
R.
Jinno
,
Y.
Cho
,
H. G.
Xing
,
D.
Jena
,
R.
Korlacki
, and
M.
Schubert
,
Appl. Phys. Lett.
119
,
092103
(
2021
).
10.
K.
Uno
,
R.
Jinno
, and
S.
Fujita
,
J. Appl. Phys.
131
,
090902
(
2022
).
11.
J. A.
Spencer
,
A. L.
Mock
,
A. G.
Jacobs
,
M.
Schubert
,
Y.
Zhang
, and
M. J.
Tadjer
,
Appl. Phys. Rev.
9
,
011315
(
2022
).
12.
Y. J.
Zhang
 et al.,
Appl. Phys. Lett.
120
,
121601
(
2022
).
13.
D.
Yang
,
B.
Kim
,
T. H.
Eom
,
Y.
Park
, and
H. W.
Jang
,
Electron. Mater. Lett.
18
,
113
(
2022
).
14.
Andrew
Venzie
,
Amanda
Portoff
,
Michael
Stavola
,
W.
Beall Fowler
,
Jihyun
Kim
,
Dae-Woo
Jeon
,
Ji-Hyeon
Park
, and
Stephen J.
Pearton
,
Appl. Phys. Lett.
120
,
192101
(
2022
).
15.
R.
Schewski
 et al.,
Appl. Phys. Express
8
,
011101
(
2015
).
16.
M.
Kracht
,
A.
Karg
,
M.
Feneberg
,
J.
Bläsing
,
J.
Schörmann
,
R.
Goldhahn
, and
M.
Eickhoff
,
Phys. Rev. Appl.
10
,
024047
(
2018
).
17.
A.
Polyakov
 et al.,
J. Appl. Phys.
131
,
215701
(
2022
).
18.
Y.
Oshima
,
K.
Kawara
,
T.
Shinohe
,
T.
Hitora
,
M.
Kasu
, and
S.
Fujita
,
APL Mater.
7
,
022503
(
2019
).
19.
Matthew
Hilfiker
,
Rafał
Korlacki
,
Riena
Jinno
,
Yongjin
Cho
,
Huili Grace
Xing
,
Debdeep
Jena
,
Ufuk
Kilic
,
Megan
Stokey
, and
Mathias
Schubert
,
Appl. Phys. Lett
118
,
062103
(
2021
).
20.
V. I.
Nikolaev
 et al.,
ECS J. Solid State Sci. Technol.
11
,
115002
(
2022
).
21.
K.
Kawara
,
Y.
Oshima
,
M.
Okigawa
, and
T.
Shinohe
,
Appl. Phys. Express
13
,
075507
(
2020
).
22.
A.
Portoff
,
M.
Stavola
,
W.
Beall Fowler
,
S. J.
Pearton
, and
E. R.
Glaser
, “
Hydrogen centers as a probe of VGa(2) defects in β-Ga2O3
,”
Appl. Phys. Lett.
120
,
062101
(
2023
).
23.
Alexander Y.
Polyakov
 et al.,
J. Appl. Phys.
132
,
035701
(
2022
).
24.
A.
Sharma
and
U.
Singisetti
,
Appl. Phys. Lett.
118
,
032101
(
2021
).
25.
Riena
Jinno
,
Kentaro
Kaneko
, and
Shizuo
Fujita
,
Jpn. J. Appl. Phys
60
,
SBBD13
(
2021
).
26.
A.
Segura
,
L.
Artus
,
R.
Cusco
,
R.
Goldhahn
, and
M.
Feneberg
,
Phys. Rev. Mater.
1
,
024604
(
2017
).
27.
M.
Hilfiker
,
R.
Korlacki
,
R.
Jinno
,
Y.
Cho
,
H. G.
Xing
,
D.
Jena
,
U.
Kilic
,
M.
Stokey
, and
M.
Schubert
,
Appl. Phys. Lett.
118
,
062103
(
2021
).
28.
M.
Feneberg
,
J.
Nixdorf
,
M. D.
Neumann
,
N.
Esser
,
L.
Artus
,
R.
Cusco
,
T.
Yamaguchi
, and
R.
Goldhahn
,
Phys. Rev. Mater.
2
,
044601
(
2018
).
29.
M.
Stokey
 et al.,
Phys. Rev. Mater.
6
,
014601
(
2022
).
30.
A. Y.
Polyakov
 et al.,
APL Mater.
7
,
051103
(
2019
).
31.
S. I.
Kan
,
S.
Takemoto
,
K.
Kaneko
,
I.
Takahashi
,
M.
Sugimoto
, and
T.
Shinohe
,
Appl. Phys. Lett.
113
,
212104
(
2018
).
32.
J. G.
Hao
,
H. H.
Gong
,
X. H.
Chen
,
Y.
Xu
,
F. F.
Ren
, and
S. L.
Gu
,
Appl. Phys. Lett.
118
,
261601
(
2021
).
33.
J. P.
McCandless
 et al.,
Appl. Phys. Lett.
119
,
062102
(
2021
).
34.
Patrick H.
Carey
,
Fan
Ren
,
David C.
Hays
,
Brent P.
Gila
,
Stephen J.
Pearton
,
Soohwan
Jang
, and
Akito
Kuramata
,
Jpn. J. Appl. Phys.
56
,
071101
(
2017
).
35.
E. A.
Kraut
,
R. W.
Grant
,
J. R.
Waldrop
, and
S. P.
Kowalczyk
,
Phys. Rev. Lett.
44
,
1620
(
1980
).
36.
Scott A.
Chambers
,
Le
Wang
, and
Donald R.
Baer
,
J. Vac. Sci. Technol. A
38
,
061201
(
2020
).
37.
Grzegorz
Greczynski
and
Lars
Hultman
,
J. Appl. Phys.
132
,
011101
(
2022
).
38.
Grzegorz
Greczynski
and
Lars
Hultman
,
Sci. Talks
1
,
100007
(
2022
).
39.
C.
Fares
,
F.
Ren
,
Max
Knessl
,
H.
von Wenckstern
,
M.
Grundmann
, and
S. J.
Pearton
, “
Chapter 9
,” in
Wide Bandgap Semiconductor Based Electronics
, edited by
F.
Ren
and
S. J.
Pearton
(
IOP Publishing
,
Bristol
,
2020
).
40.
D. C.
Hays
,
B. P.
Gila
,
S. J.
Pearton
, and
F.
Ren
,
Appl. Phys. Rev.
4
,
021301
(
2017
).
41.
Xinyi
Xia
,
Nahid Sultan
Al Mamun
,
Maxwell
Wetherington
,
Fan
Ren
,
Aman
Haque
, and
S. J.
Pearton
,
J. Vac. Sci. Technol. A
40
,
053403
(
2022
).
42.
Yuichi
Oshima
,
Katsuaki
Kawara
,
Takayoshi
Oshima
,
Mitsuru
Okigawa
, and
Takashi
Shinohe
,
Semicond. Sci. Technol.
35
,
055022
(
2020
).
43.
Yuichi
Oshima
,
Encarnación G.
Víllora
, and
Kiyoshi
Shimamura
,
Appl. Phys. Express
8
,
055501
(
2015
).
44.
J.
Kim
,
F.
Ren
, and
S. J.
Pearton
,
Nanoscale Horiz.
4
,
1251
(
2019
).
45.
J. E. N.
Swallow
,
J. B.
Varley
,
L. A. H.
Jones
,
J. T.
Gibbon
,
L. F. J.
Piper
,
V. R.
Dhanak
, and
T. D.
Veal
,
APL Mater.
7
,
022528
(
2019
).
You do not currently have access to this content.