Gallium oxide (β-Ga2O3) is becoming a popular material for high power electronic devices due to its wide bandgap and ease of processing. In this work, β-Ga2O3 substrates received various annealing treatments before atomic layer deposition of HfO2 and subsequent fabrication of metal–oxide–semiconductor (MOS) capacitors. Annealing of β-Ga2O3 with forming gas or nitrogen produced degraded capacitance–voltage (C–V) behavior compared to a β-Ga2O3 control sample with no annealing. A sample annealed with pure oxygen had improved C–V characteristics relative to the control sample, with a higher maximum capacitance and smaller flat-band voltage shift, indicating that oxygen annealing improved the C–V behavior. X-ray photoelectron spectroscopy also suggested a reduction in the oxygen vacancy concentration after O2 annealing at 450 °C, which supports the improved C–V characteristics and indicates that O2 annealing of β-Ga2O3 may lead to better MOS device performance.

1.
M.
Higashiwaki
,
K.
Sasaki
,
H.
Murakami
,
Y.
Kumagai
,
A.
Koukitu
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Semicond. Sci. Technol.
31
,
034001
(
2016
).
2.
M.
Baldini
,
Z.
Galazka
, and
G.
Wagner
,
Mater. Sci. Semicond. Process.
78
,
132
(
2018
).
3.
M. H.
Wong
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
IEEE Electron Device Lett.
37
,
212
(
2016
).
4.
M. H.
Wong
,
Y.
Nakata
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Express
10
,
041101
(
2017
).
5.
D. I.
Shahin
,
M. J.
Tadjer
,
V. D.
Wheeler
,
A. D.
Koehler
,
T. J.
Anderson
,
C. R.
Eddy
, and
A.
Christou
,
Appl. Phys. Lett.
112
,
042107
(
2018
).
6.
H.
Dong
 et al.,
AIP Adv.
8
,
065215
(
2018
).
7.
H.
Zhou
,
S.
Alghamdi
,
M.
Si
,
G.
Qiu
, and
P. D.
Ye
,
IEEE Electron Device Lett.
37
,
1411
(
2016
).
8.
K.
Zeng
,
Y.
Jia
, and
U.
Singisetti
,
IEEE Electron Device Lett.
37
,
906
(
2016
).
9.
H. K.
Lee
,
H. J.
Yun
,
K. H.
Shim
,
H. G.
Park
,
T. H.
Jang
,
S. N.
Lee
, and
C. J.
Choi
,
Appl. Surf. Sci.
506
,
144673
(
2020
).
10.
Y.
Lv
 et al.,
Phys. Status Solidi RRL
14
,
1
(
2020
).
11.
S.
Ohira
,
N.
Suzuki
,
N.
Arai
,
M.
Tanaka
,
T.
Sugawara
,
K.
Nakajima
, and
T.
Shishido
,
Thin Solid Films
516
,
5763
(
2008
).
12.
X.
Qin
,
A.
Lucero
,
A.
Azcatl
,
J.
Kim
, and
R. M.
Wallace
,
Appl. Phys. Lett.
105
,
011602
(
2014
).
13.
R.
Hawkins
and
C. D.
Young
,
J. Vac. Sci. Technol. A
40
,
053202
(
2022
).
14.
R. M.
Wallace
,
ECS Trans.
64
,
109
(
2014
).
15.
See https://www.astm.org/e2108 for ASTM Committee E-42 (2016).
16.
P. S.
Lysaght
,
J. C.
Woicik
,
M. A.
Sahiner
,
B. H.
Lee
, and
R.
Jammy
,
J. Non-Cryst. Solids
354
,
399
(
2008
).
17.
R.
Winter
,
J.
Ahn
,
P. C.
McIntyre
, and
M.
Eizenberg
,
J. Vac. Sci. Technol. B
31
,
030604
(
2013
).
18.
D. A.
Zatsepin
,
A. F.
Zatsepin
,
D. W.
Boukhvalov
,
E. Z.
Kurmaev
, and
N. V.
Gavrilov
,
Appl. Surf. Sci.
367
,
320
(
2016
).
19.
X.
Wang
 et al.,
Adv. Mater. Interfaces
4
,
1
(
2017
).
20.
X.
Wang
 et al.,
Appl. Surf. Sci.
443
,
567
(
2018
).
21.
Y.-R.
Luo
,
Comprehensive Handbook of Chemical Bond Energies
, 1st ed. (
CRC
,
Boca Raton
,
FL
,
2007
).
You do not currently have access to this content.