The use of carbon nanotube (CNT) and graphene structures as doped and decorated with La atom as an adsorbent and a sensor material for hydrogen molecules was investigated by the density functional theory method. It is seen that the hydrogen interaction increased significantly after the La modification on the CNT and graphene. The fact that the adsorption enthalpy values are smaller than the liquefaction enthalpy value of hydrogen indicates that they can be used as adsorbent materials for hydrogen adsorption. While the adsorption energy values are better in the modification with La doping in the CNT structure, the results in the graphene structure are better in the decoration with the La atom. Charge transfer has occurred between the structures modified with La and the hydrogen molecule. After the hydrogen interaction, HOMO–LUMO gap values decreased in La-modified CNT structures and increased in graphene structures. This signifies that the La-modified CNT structures could be electronic sensors for hydrogen molecules. Consequently, the CNT and graphene structures doped and decorated with La can be used as adsorbents for hydrogen molecules. In addition, La-modified structures have electronic sensor properties.

1.
R.
Ramachandran
and
R. K.
Menon
,
Int. J. Hydrogen Energy
23
,
593
(
1998
).
2.
N.
Rambhujun
,
M. S.
Salman
,
T.
Wang
,
C.
Pratthana
,
P.
Sapkota
,
M.
Costalin
,
Q.
Lai
, and
K.-F.
Aguey-Zinsou
,
MRS Energy Sustain.
7
,
1
(
2020
).
3.
M.
Yoon
,
S.
Yang
,
E.
Wang
, and
Z.
Zhang
,
Nano Lett.
7
,
2578
(
2007
).
4.
M.
Mohan
,
V.
Sharma
,
E.
Kumar
, and
V.
Gayathri
,
Energy Storage
1
,
e35
(
2019
).
5.
J. L.
Rowsell
and
O. M.
Yaghi
,
Angew. Chem. Int. Ed.
44
,
4670
(
2005
).
6.
S.
Niaz
,
T.
Manzoor
, and
A. H.
Pandith
,
Renew. Sustain. Energy Rev.
50
,
457
(
2015
).
7.
D. P.
Broom
,
C.
Webb
,
G. S.
Fanourgakis
,
G. E.
Froudakis
,
P. N.
Trikalitis
, and
M.
Hirscher
,
Int. J. Hydrogen Energy
44
,
7768
(
2019
).
8.
N.
Yuksel
,
A.
Kose
, and
M. F.
Fellah
,
Colloids Surf. A
641
,
128510
(
2022
).
9.
J.
Lyu
,
V.
Kudiiarov
, and
A.
Lider
,
Nanomaterials
10
,
255
(
2020
).
10.
M.
Liu
,
X.
Xiao
,
S.
Zhao
,
S.
Saremi-Yarahmadi
,
M.
Chen
,
J.
Zheng
,
S.
Li
, and
L.
Chen
,
Int. J. Hydrogen Energy
44
,
1059
(
2019
).
11.
Q.
Zhang
,
Y.
Huang
,
L.
Xu
,
L.
Zang
,
H.
Guo
,
L.
Jiao
,
H.
Yuan
, and
Y.
Wang
,
ACS Appl. Nano Mater.
2
,
3828
(
2019
).
12.
H.
Lee
,
J.
Ihm
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. B
80
,
115412
(
2009
).
13.
W.
Liu
,
Y.
Liu
,
R.
Wang
,
L.
Hao
,
D.
Song
, and
Z.
Li
,
Phys. Status Solidi B
251
,
229
(
2014
).
14.
Z.
Zhang
,
W.
Zheng
, and
Q.
Jiang
,
Phys. Chem. Chem. Phys.
13
,
9483
(
2011
).
15.
Z.
Luo
,
X.
Fan
,
R.
Pan
, and
Y.
An
,
Int. J. Hydrogen Energy
42
,
3106
(
2017
).
16.
S.
Ghosh
and
V.
Padmanabhan
,
Int. J. Hydrogen Energy
42
,
24237
(
2017
).
17.
A.
Kose
,
N.
Yuksel
, and
M. F.
Fellah
,
Diamond Relat. Mater.
124
,
108921
(
2022
).
18.
C.
Tabtimsai
,
W.
Rakrai
, and
B.
Wanno
,
Vacuum
139
,
101
(
2017
).
19.
C.
Liu
,
Y.
Chen
,
C.-Z.
Wu
,
S.-T.
Xu
, and
H.-M.
Cheng
,
Carbon
48
,
452
(
2010
).
20.
R. S.
Rajaura
,
S.
Srivastava
,
P. K.
Sharma
,
S.
Mathur
,
R.
Shrivastava
,
S.
Sharma
, and
Y.
Vijay
,
Nano-Struct. Nano-Objects
14
,
57
(
2018
).
21.
Z.
Ramezani
and
H.
Dehghani
,
Int. J. Hydrogen Energy
44
,
13613
(
2019
).
22.
M.
Ni
,
L.
Huang
,
L.
Guo
, and
Z.
Zeng
,
Int. J. Hydrogen Energy
35
,
3546
(
2010
).
23.
S.
Seenithurai
,
R. K.
Pandyan
,
S. V.
Kumar
,
C.
Saranya
, and
M.
Mahendran
,
Int. J. Hydrogen Energy
39
,
11016
(
2014
).
24.
S.
Lee
,
M.
Lee
,
H.
Choi
,
D. S.
Yoo
, and
Y.-C.
Chung
,
Int. J. Hydrogen Energy
38
,
4611
(
2013
).
25.
Y.
Zhou
,
W.
Chu
,
F.
Jing
,
J.
Zheng
,
W.
Sun
, and
Y.
Xue
,
Appl. Surf. Sci.
410
,
166
(
2017
).
26.
Y.
Li
,
G.
Zhao
,
C.
Liu
,
Y.
Wang
,
J.
Sun
,
Y.
Gu
,
Y.
Wang
, and
Z.
Zeng
,
Int. J. Hydrogen Energy
37
,
5754
(
2012
).
27.
C.
Xiang
,
A.
Li
,
S.
Yang
,
Z.
Lan
,
W.
Xie
,
Y.
Tang
,
H.
Xu
,
Z.
Wang
, and
H.
Gu
,
RSC Adv.
9
,
25690
(
2019
).
28.
M.
Malček
and
L.
Bučinský
,
Theor. Chem. Acc.
139
,
1
(
2020
).
29.
M.
Malček
,
S.
Müllerová
, and
L.
Bučinský
,
Physica E
139
,
115144
(
2022
).
30.
P.
Liu
,
J.
Liang
,
R.
Xue
,
Q.
Du
, and
M.
Jiang
,
Int. J. Hydrogen Energy
44
,
27853
(
2019
).
31.
L.
Xiao
,
W.
Chu
,
W.
Sun
,
Y.
Xue
, and
C.
Jiang
,
Chem. Res. Chin. Univ.
33
,
422
(
2017
).
32.
S.
Yue
and
H.
Zhang
,
Front. Phys.
7
,
353
(
2012
).
33.
Y.-J.
Li
,
M.
Wang
,
M.-y.
Tang
,
X.
Tian
,
S.
Gao
,
Z.
He
,
Y.
Li
, and
T.-G.
Zhou
,
Physica E
75
,
169
(
2016
).
34.
H.
Luo
,
K.
Xu
,
Z.
Gong
,
N.
Li
,
K.
Zhang
, and
W.
Wu
,
Appl. Surf. Sci.
566
,
150390
(
2021
).
35.
Z.
Zhang
,
J.
Li
, and
Q.
Jiang
,
J. Phys. Chem. C
114
,
7733
(
2010
).
36.
M.
Mananghaya
,
E.
Rodulfo
,
G. N.
Santos
,
A. R.
Villagracia
, and
A. N.
Ladines
,
J. Nanomater.
2012
,
1
(
2012
).
37.
M.
Mananghaya
,
D.
Yu
,
G. N.
Santos
, and
E.
Rodulfo
,
Sci. Rep.
6
,
27370
(
2016
).
38.
W.
Zhang
,
H.
Ma
,
T.
Li
, and
C.
He
,
Chin. Chem. Lett.
33
,
3726
(
2022
).
39.
H.-Y.
Li
,
S.-N.
Zhao
,
S.-Q.
Zang
, and
J.
Li
,
Chem. Soc. Rev.
49
,
6364
(
2020
).
40.
S.-J.
Young
 et al,
J. Electrochem. Soc.
167
,
167519
(
2020
).
41.
M.
Han
,
J.-K.
Kim
,
G. S.
Lee
,
S.-W.
Kang
, and
D.
Jung
,
Jpn. J. Appl. Phys.
58
,
SDDE03
(
2019
).
42.
O.
Ovsianytskyi
,
Y.-S.
Nam
,
O.
Tsymbalenko
,
P.-T.
Lan
,
M.-W.
Moon
, and
K.-B.
Lee
,
Sens. Actuators B
257
,
278
(
2018
).
43.
M.
Frisch
 et al,
Gaussian 09, Revision E. 01, Gaussian, Inc., Wallingford, CT, 2009.
44.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
45.
J. D.
Chai
and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
084106
(
2008
).
46.
N. K.
a
and
J. J.
Dannenberg
,
J. Phys. Chem. A
105
,
1944
(
2001
).
47.
E.
Vessally
,
I.
Alkorta
,
S.
Ahmadi
,
R.
Mohammadi
, and
A.
Hosseinian
,
RSC Adv.
9
,
853
(
2019
).
48.
T.
Lu
and
F.
Chen
,
J. Comput. Chem.
33
,
580
(
2012
).
49.
A.
Sigal
,
M.
Rojas
, and
E.
Leiva
,
Phys. Rev. Lett.
107
,
158701
(
2011
).
50.
A.
Soltani
,
M. B.
Javan
,
M. S.
Hoseininezhad-Namin
,
N.
Tajabor
,
E. T.
Lemeski
, and
F.
Pourarian
,
Synth. Met.
234
,
1
(
2017
).
51.
D.
Paul
and
J. D. U.
Sarkar
,
AIP Conf. Proc.
2265
,
030388
(
2020
).
52.
M.
Singh
,
A.
Shukla
, and
B.
Chakraborty
,
“High capacity hydrogen storage on zirconium decorated γ-graphyne: A systematic first-principles study,”
Int. J. Hydrogen Energy
(in press).
53.
M. F.
Fellah
,
Int. J. Hydrogen Energy
44
,
27010
(
2019
).
54.
S.
Demir
and
M. F.
Fellah
,
Appl. Surf. Sci.
504
,
144141
(
2020
).
55.
A.
Ahmadi
,
N. L.
Hadipour
,
M.
Kamfiroozi
, and
Z.
Bagheri
,
Sens. Actuators B
161
,
1025
(
2012
).
56.
A. A. P.
Nasser
,
L.
Hadipour
, and
Hammed
Soleymanabadi
,
J. Phys. Chem. C
119
,
6398
(
2015
).
57.
L.
Li
and
J.
Zhao
,
J. Mol. Liq.
306
,
112926
(
2020
).
58.
V.
Kishnani
,
A.
Yadav
,
K.
Mondal
, and
A.
Gupta
,
Energies
14
,
5738
(
2021
).
59.
N.
Yuksel
and
M. F.
Fellah
,
“Hydrogen adsorption and sensing properties of p-tert-butylcalix[4]arene and its transition metal complexes: A DFT study,”
Int. J. Hydrogen Energy
(in press).
60.
P. S.
a
and
P.
Politzer
,
J. Phys. Chem.
94
,
3959
(
1990
).
61.
G.
Yu
,
L.
Lyu
,
F.
Zhang
,
D.
Yan
,
W.
Cao
, and
C.
Hu
,
RSC Adv.
8
,
3312
(
2018
).
62.
E. R.
Johnson
,
S.
Keinan
,
P.
Mori-Sánchez
,
J.
Contreras-Garcia
,
A. J.
Cohen
, and
W.
Yang
,
J. Am. Chem. Soc.
132
,
6498
(
2010
).
63.
M.
Eslami
,
V.
Vahabi
, and
A.
Ahmadi Peyghan
,
Physica E
76
,
6
(
2016
).
64.
J.
Koettgen
,
T.
Zacherle
,
S.
Grieshammer
, and
M.
Martin
,
Phys. Chem. Chem. Phys.
19
,
9957
(
2017
).
65.
Y.
Li
and
N.
Lin
,
Phys. Rev. B
84
,
125418
(
2011
).
66.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002229 to examine the HOMO–LUMO illustrations and DOS plots of the other structures before and after hydrogen adsorption (Figs. S1–S3)

Supplementary Material

You do not currently have access to this content.