Alloying β-Ga2O3 with Al2O3 to create (AlxGa1−x)2O3 enables ultra-wide bandgap materials suitable for applications deep into ultraviolet. In this work, photoluminescence (PL) spectra of Cr3+ were investigated in monoclinic single crystal β-Ga2O3, and 10 mol.  % Al2O3 alloyed with β-Ga2O3, denoted β-(Al0.1Ga0.9)2O3 or AGO. Temperature-dependent PL properties were studied for Cr3+ in AGO and β-Ga2O3 from 295 to 16 K. For both materials at room temperature, the red-line emission doublet R1 and R2 occurs at 696 nm (1.78 eV) and 690 nm (1.80 eV), respectively, along with a broad emission band at 709 nm (1.75 eV). The linewidths for AGO are larger for all temperatures due to alloy broadening. For both materials, the R-lines blue-shift with decreasing temperature. The (lowest energy) R1 line is dominant at low temperatures due to the thermal population of the levels. For temperatures above ∼50 K, however, the ratio of R2 to R1 peak areas is dominated by nonradiative combination.

1.
J. B.
Varley
,
J. Mater. Res.
36
,
4790
(
2021
).
2.
C.
Kim
,
G.
Pilania
, and
R.
Ramprasad
,
Chem. Mater.
28
,
1304
(
2016
).
3.
H.
Peelaers
,
J. B.
Varley
,
J. S.
Speck
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
112
,
242101
(
2018
).
4.
J. B.
Varley
,
H.
Peelaers
,
A.
Janotti
, and
C. G.
Van de Walle
,
J. Phys.: Condens. Matter
23
,
334212
(
2011
).
5.
J. M.
Johnson
 et al,
APL Mater.
9
,
051103
(
2021
).
6.
A. J.
Green
 et al,
IEEE Electron Device Lett.
38
,
790
(
2017
).
7.
J.
Jesenovec
,
B.
Dutton
,
N.
Stone-Weiss
,
A.
Chmielewski
,
M.
Saleh
,
C.
Peterson
,
N.
Alem
,
S.
Krishnamoorthy
, and
J. S.
McCloy
,
J. Appl. Phys.
131
,
155702
(
2022
).
8.
D. S.
Cook
,
J. E.
Hooper
,
D. M.
Dawson
,
J. M.
Fisher
,
D.
Thompsett
,
S. E.
Ashbrook
, and
R. I.
Walton
,
Inorg. Chem.
59
,
3805
(
2020
).
9.
B. E.
Kananen
,
L. E.
Halliburton
,
K. T.
Stevens
,
G. K.
Foundos
, and
N. C.
Giles
,
Appl. Phys. Lett.
110
,
202104
(
2017
).
10.
A.
Luchechko
,
V.
Vasyltsiv
,
Y.
Zhydachevskyy
,
M.
Kushlyk
,
S.
Ubizskii
, and
A.
Suchocki
,
J. Phys. Appl. Phys.
53
,
354001
(
2020
).
11.
D.
Vivien
,
B.
Viana
,
A.
Revcolevschi
,
J. D.
Barrie
,
B.
Dunn
,
P.
Nelson
, and
O. M.
Stafsudd
,
J. Lumin.
39
,
29
(
1987
).
12.
H. H.
Tippins
,
Phys. Rev.
137
,
A865
(
1965
).
13.
Y.
Tanabe
and
S.
Sugano
,
J. Phys. Soc. Jpn.
9
,
753
(
1954
).
14.
X.-S.
Wang
,
W.-S.
Li
,
J.-Q.
Situ
,
X.-Y.
Ying
,
H.
Chen
,
Y.
Jin
, and
Y.-Z.
Du
,
RSC Adv.
5
,
12886
(
2015
).
15.
J.
Bhattacharjee
and
S. D.
Singh
,
Solid State Commun.
352
,
114831
(
2022
).
16.
V. I.
Vasil’tsiv
and
Ya. M.
Zakarko
,
J. Appl. Spectrosc.
39
,
1037
(
1983
).
17.
M.
Alonso-Orts
,
D.
Carrasco
,
J. M.
San Juan
,
M. L.
,
A.
de Andrés
,
E.
Nogales
, and
B.
Méndez
,
Small
18
,
2105355
(
2022
).
18.
V.
Mykhaylyk
,
H.
Kraus
,
Y.
Zhydachevskyy
,
V.
Tsiumra
,
A.
Luchechko
,
A.
Wagner
, and
A.
Suchocki
,
Sensors
20
,
5259
(
2020
).
19.
Y.
Tokida
and
S.
Adachi
,
J. Appl. Phys.
112
,
063522
(
2012
).
20.
H. C.
Seat
and
J. H.
Sharp
,
IEEE Trans. Instrum. Meas.
53
,
15
(
2004
).
21.
R.
Sun
,
Y. K.
Ooi
,
P. T.
Dickens
,
K. G.
Lynn
, and
M. A.
Scarpulla
,
Appl. Phys. Lett.
117
,
052101
(
2020
).
22.
V.
Vasyltsiv
,
A.
Luchechko
,
Y.
Zhydachevskyy
,
L.
Kostyk
,
R.
Lys
,
D.
Slobodzyan
,
R.
Jakieła
,
B.
Pavlyk
, and
A.
Suchocki
,
J. Vac. Sci. Technol. A
39
,
033201
(
2021
).
23.
C.
Remple
,
J.
Huso
, and
M. D.
McCluskey
,
AIP Adv.
11
,
105006
(
2021
).
24.
A. L.
Schawlow
,
J. Appl. Phys.
33
,
395
(
1962
).
25.
W.
Luhs
and
B.
Wellegehausen
,
OSA Contin.
2
,
184
(
2019
).
26.
G.
Mariotto
,
M.
Montagna
, and
F.
Rossi
,
J. Phys. Colloq.
46
,
C7-343
(
1985
).
27.
C. G.
Walsh
,
J. F.
Donegan
,
T. J.
Glynn
,
G. P.
Morgan
,
G. F.
Imbusch
, and
J. P.
Remeika
,
J. Lumin.
40–41
,
103
(
1988
).
28.
I.
Hany
 et al,
Mater. Lett.
257
,
126744
(
2019
).
29.
J. E.
Stehr
,
M.
Jansson
,
D. M.
Hofmann
,
J.
Kim
,
S. J.
Pearton
,
W. M.
Chen
, and
I. A.
Buyanova
,
Appl. Phys. Lett.
119
,
052101
(
2021
).
30.
C. S.
Yang
 et al,
J. Appl. Phys.
97
,
033514
(
2005
).
31.
Y.
Fang
 et al,
Sci. Rep.
5
,
12718
(
2015
).
32.
T.
Lu
 et al,
Sci. Rep.
4
,
6131
(
2015
).
33.
J.
Yen
and
M.
Nicol
,
J. Appl. Phys.
72
,
5535
(
1992
).
34.
R. F.
Cook
and
C. A.
Michaels
,
J. Res. Natl. Inst. Stand. Technol.
122
,
43
(
2017
).
35.
R.
Gao
,
H.
Li
, and
J.
Zhao
,
Am. Mineral.
100
,
1554
(
2015
).
36.
U.
Gibson
and
M.
Chernuschenko
,
Opt. Express
4
,
443
(
1999
).
37.
D. D.
Ragan
,
R.
Gustavsen
, and
D.
Schiferl
,
J. Appl. Phys.
72
,
5539
(
1992
).
38.
T. P.
Beales
,
C. H. L.
Goodman
, and
K.
Scarrott
,
Solid State Commun.
73
,
1
(
1990
).
39.
J.
Blevins
and
G.
Yang
,
Mater. Res. Bull.
144
,
111494
(
2021
).
40.
L. C.
Cossolino
and
A. R.
Zanatta
,
J. Phys. Appl. Phys.
43
,
015302
(
2010
).
41.
M.
Peres
 et al,
Appl. Phys. Lett.
120
,
261904
(
2022
).
42.
V. I.
Vasyltsiv
,
Y. I.
Rym
, and
Y. M.
Zakharko
,
Proc. SPIE
2698, 255 (1996).
43.
J.
Cooke
,
P.
Ranga
,
J.
Jesenovec
,
J. S.
McCloy
,
S.
Krishnamoorthy
,
M. A.
Scarpulla
, and
B.
Sensale-Rodriguez
,
Sci. Rep.
12
,
3243
(
2022
).
44.
M.
Saleh
,
A.
Bhattacharyya
,
J. B.
Varley
,
S.
Swain
,
J.
Jesenovec
,
S.
Krishnamoorthy
, and
K.
Lynn
,
Appl. Phys. Express
12
,
085502
(
2019
).
45.
M.
Saleh
,
J. B.
Varley
,
J.
Jesenovec
,
A.
Bhattacharyya
,
S.
Krishnamoorthy
,
S.
Swain
, and
K.
Lynn
,
Semicond. Sci. Technol.
35
,
04LT01
(
2020
).
46.
J.
Jesenovec
,
C.
Pansegrau
,
M. D.
McCluskey
,
J. S.
McCloy
,
T. D.
Gustafson
,
L. E.
Halliburton
, and
J. B.
Varley
,
Phys. Rev. Lett.
128
,
077402
(
2022
).
47.
J.
Jesenovec
,
C.
Remple
,
J.
Huso
,
B.
Dutton
,
P.
Toews
,
M. D.
McCluskey
, and
J. S.
McCloy
,
J. Cryst. Growth
578
,
126419
(
2021
).
48.
J. S.
McCloy
,
J.
Jesenovec
,
B.
Dutton
,
C.
Pansegrau
,
C.
Remple
,
M. H.
Weber
,
S.
Swain
,
M.
McCluskey
, and
M.
Scarpulla
, in
Oxide-Based Mater. Devices XIII
, edited by
F. H.
Teherani
and
D. J.
Rogers
(
SPIE
,
San Francisco
,
2022
), p.
10
.
49.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002340 for additional spectra and fitting results.

Supplementary Material

You do not currently have access to this content.