Two atomic layer etching (ALE) methods were studied for crystalline GaN, based on oxidation, fluorination, and ligand exchange. Etching was performed on unintentionally doped GaN grown by hydride vapor phase epitaxy. For the first step, the GaN surfaces were oxidized using either water vapor or remote O2-plasma exposure to produce a thin oxide layer. Removal of the surface oxide was addressed using alternating exposures of hydrogen fluoride (HF) and trimethylgallium (TMG) via fluorination and ligand exchange, respectively. Several HF and TMG super cycles were implemented to remove the surface oxide. Each ALE process was monitored in situ using multiwavelength ellipsometry. X-ray photoelectron spectroscopy was employed for the characterization of surface composition and impurity states. Additionally, the thermal and plasma-enhanced ALE methods were performed on patterned wafers and transmission electron microscopy (TEM) was used to measure the surface change. The x-ray photoelectron spectroscopy measurements indicated that F and O impurities remained on etched surfaces for both ALE processes. Ellipsometry indicated a slight reduction in thickness. TEM indicated a removal rate that was less than predicted. We suggest that the etch rates were reduced due to the ordered structure of the oxide formed on crystalline GaN surfaces.

1.
B. J.
Baliga
,
Semicond. Sci. Tech.
28
,
074011
(
2013
).
2.
Y.
Zhang
,
A.
Dadgar
, and
T.
Palacios
,
J. Phys. D: Appl. Phys.
51
,
273001
(
2018
).
3.
S.
Chowdhury
,
Phys. Stat. Sol. A
212
,
1066
(
2015
).
4.
J.
Tian
,
C.
Lai
,
G.
Feng
,
D.
Banerjee
,
W.
Li
, and
N. C.
Kar
,
Int. J. Sustain. Energy
39
,
88
(
2020
).
5.
M. J.
Scott
,
L.
Fu
,
X.
Zhang
,
J.
Li
,
C.
Yao
,
M.
Sievers
, and
J.
Wang
,
Semicond. Sci. Tech.
28
,
074013
(
2013
).
6.
7.
J. M.
Lee
,
K. M.
Chang
,
S. W.
Kim
,
C.
Huh
,
I. H.
Lee
, and
S. J.
Park
,
J. Appl. Phys.
87
,
7667
(
2000
).
8.
Z.
Mouffak
,
A.
Bensaoula
, and
L.
Trombetta
,
J. Appl. Phys.
95
,
727
(
2004
).
9.
R. J.
Shul
,
L.
Zhang
,
A. G.
Baca
,
C. G.
Willison
,
J.
Han
,
S. J.
Pearton
,
K. P.
Lee
, and
F.
Ren
,
Solid State Electron.
45
,
13
(
2001
).
10.
X. A.
Cao
 et al.,
Appl. Phys. Lett.
75
,
232
(
1999
).
11.
A.
Debald
,
S.
Kotzea
,
M.
Heuken
,
H.
Kalisch
, and
A.
Vescan
,
Phys. Status Solidi A
216
,
1800677
(
2019
).
12.
I.
Kim
,
C.
Kauppinen
,
I.
Radevici
,
P.
Kivisaari
, and
J.
Oksanen
,
Phys. Stat. Sol. A
219
,
2100461
(
2022
).
13.
K. A.
Hatch
,
D. C.
Messina
,
H.
Fu
,
K.
Fu
,
Y.
Zhao
, and
R. J.
Nemanich
,
J. Appl. Phys.
131
,
185301
(
2022
).
14.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
15.
A.
Fischer
,
A.
Routzahn
,
S. M.
George
, and
T.
Lill
,
J. Vac. Sci. Technol. A
39
,
030801
(
2021
).
16.
N. R.
Johnson
,
J. K.
Hite
,
M. A.
Mastro
,
C. R.
Eddy
, and
S. M.
George
,
Appl. Phys. Lett.
114
,
243103
(
2019
).
17.
C.
Kauppinen
,
S. A.
Khan
,
J.
Sundqvist
,
D. B.
Suyatin
,
S.
Suihkonen
,
E. I.
Kauppinen
, and
M.
Sopanen
,
J. Vac. Sci. Technol. A
35
,
060603
(
2017
).
18.
C.
Mannequin
,
C.
Vallée
,
K.
Akimoto
,
T.
Chevolleau
,
C.
Durand
,
C.
Dussarrat
,
T.
Teramoto
,
E.
Gheeraert
, and
H.
Mariette
,
J. Vac. Sci. Technol. A
38
,
032602
(
2020
).
19.
Y.
Zhang
 et al.,
IEEE Electr. Device Lett.
41
,
701
(
2020
).
20.
D.
Ohori
,
T.
Sawada
,
K.
Sugawara
,
M.
Okada
,
K.
Nakata
,
K.
Inoue
,
D.
Sato
, and
S.
Samukawa
,
J. Vac. Sci. Technol. A
39
,
042601
(
2021
).
21.
22.
Y.
Lee
,
N. R.
Johnson
, and
S. M.
George
,
Chem. Mater.
32
,
5937
(
2020
).
23.
K. A.
Hatch
,
D. C.
Messina
, and
R. J.
Nemanich
,
J. Vac. Sci. Technol. A
40
,
042603
(
2022
).
24.
C.
Bae
and
G.
Lucovsky
,
J. Vac. Sci. Technol. A
22
,
2402
(
2004
).
25.
H.
Ye
,
G.
Chen
,
H.
Niu
,
Y.
Zhu
,
L.
Shao
, and
Z.
Qiao
,
J. Phys. Chem. C
117
,
15976
(
2013
).
26.
M.
Sato
,
Y.
Imazeki
,
T.
Takeda
,
M.
Kobayashi
,
S.
Yamamoto
,
I.
Matsuda
,
J.
Yoshinobu
,
Y.
Nakano
, and
M.
Sugiyama
,
J. Phys. Chem. C
124
,
12466
(
2020
).
27.
S. W.
King
,
R. F.
Davis
,
R. J.
Carter
,
T. P.
Schneider
, and
R. J.
Nemanich
,
J. Vac. Sci. Technol. A
33
,
05E115
(
2015
).
28.
Y.
Yang
,
T.
Sun
,
J.
Shammas
,
M.
Kaur
,
M.
Hao
, and
R. J.
Nemanich
,
J. Appl. Phys.
118
,
165310
(
2015
).
29.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
29
,
050801
(
2011
).
30.
H. C. M.
Knoops
,
T.
Faraz
,
K.
Arts
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
37
,
030902
(
2019
).
31.
J. H.
Schofield
,
J. Electron Spectrosc.
8
,
129
(
1976
).
32.
F. A.
Stevie
and
C. L.
Donley
,
J. Vac. Sci. Technol. A
38
,
063204
(
2020
).
33.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
, in
Handbook of X-Ray Photoelectron Spectroscopy
, edited by
J.
Chastain
(
Perkin-Elmer Corporation Eden Prairie
,
Minnesota
,
1992
).
34.
R. M. A.
Azzam
,
Opt. Acta
29
,
685
(
1982
).
35.
J. B.
Theeten
and
D. E.
Aspnes
,
Ann. Rev. Mater. Sci.
11
,
97
(
1981
).
36.
A. V.
Tikhonravov
,
M. K.
Trubetskov
,
E.
Masetti
,
A. V.
Krasilnikova
, and
I. V.
Kochikov
,
Proc. SPIE
3738
,
173
(
1999
).
37.
T.
Yamamoto
 et al.,
Jpn. J. Appl. Phys.
57
,
06JE01
(
2018
).
38.
T.
Yamamoto
 et al.,
Jpn. J. Appl. Phys.
57
,
06KA05
(
2018
).
39.
V. M.
Bermudez
,
Appl. Surf. Sci.
119
,
147
(
1997
).
40.
J. H.
Dycus
,
K. J.
Mirrielees
,
E. D.
Grimley
,
R.
Kirste
,
S.
Mita
,
Z.
Sitar
,
R.
Collazo
,
D. L.
Irving
, and
J. M.
LeBeau
,
ACS Appl. Mater. Interfaces
10
,
10607
(
2018
).
41.
H.
Hao
 et al.,
J. Semicond.
40
,
012806
(
2019
).
42.
N. R.
Johnson
,
H.
Sun
,
K.
Sharma
, and
S. M.
George
,
J. Vac. Sci. Technol. A
34
,
050603
(
2016
).
43.
J. A.
Murdzek
,
A.
Rajashekhar
,
R. S.
Makala
, and
S. M.
George
,
J. Vac. Sci. Technol. A
39
,
042602
(
2021
).
44.
I. H.
Hwang
,
H. Y.
Cha
, and
K. S.
Seo
,
Coatings
11
,
268
(
2021
).
45.
V. M.
Bermudez
,
Surf. Sci. Rep.
72
,
147
(
2017
).
46.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002255 for further data and discussion of oxidation and oxide removal at the GaN surface.

Supplementary Material

You do not currently have access to this content.