We demonstrate the laser mediated atomic layer etching (ALEt) of silicon. Using a nanosecond pulsed 266 nm laser focused loosely over and in a parallel configuration to the surface of the silicon, we dissociate Cl2 gas to induce chlorination. Then, we use pulsed picosecond irradiation to remove the chlorinated layer. Subsequently, we perform continuous wave (CW) laser annealing to eliminate amorphization caused by the picosecond laser etching. Based on atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), we observed strong evidence of chlorination and digital etching at 0.85 nm etching per cycle with good uniformity.

1.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
2.
S.
Imai
,
T.
Haga
,
O.
Matsuzaki
,
T.
Hattori
, and
M.
Matsumura
,
Jpn. J. Appl. Phys.
34
,
5049
(
1995
).
3.
T.
Matsuura
,
J.
Murota
,
Y.
Sawada
, and
T.
Ohmi
,
Appl. Phys. Lett.
63
,
2803
(
1993
).
4.
K. J.
Kanarik
,
S.
Tan
,
A.
Eppler
,
J.
Marks
, and
R. A.
Gottscho
,
Solid State Technol.
56
, 14 (
2013
).
5.
C. K.
Oh
,
S. D.
Park
,
H. C.
Lee
,
J. W.
Bae
, and
G. Y.
Yeom
,
Electrochem. Solid-State Lett.
10
,
H94
(
2007
).
6.
K. K.
Ko
and
S. W.
Pang
,
J. Vac. Sci. Technol. B
11
,
2275
(
1993
).
7.
H.
Sakaue
,
S.
Iseda
,
K.
Asami
,
J.
Yamamoto
,
M.
Hirose
, and
Y.
Horiike
,
Jpn. J. Appl. Phys.
29
,
2648
(
1990
).
8.
S. D.
Athavale
and
D. J.
Economou
,
J. Vac. Sci. Technol. B
14
,
3702
(
1996
).
9.
G. S.
Oehrlein
,
D.
Metzler
, and
C.
Li
,
ECS J. Solid State Sci. Technol.
4
,
N5041
(
2015
).
10.
B.-J.
Kim
,
S.
Chung
, and
S. M.
Cho
,
Appl. Surf. Sci.
187
,
124
(
2002
).
11.
S.-D.
Park
,
K.-S.
Min
,
B.-Y.
Yoon
,
D.-H.
Lee
, and
G.-Y.
Yeom
,
Jpn. J. Appl. Phys.
44
,
389
(
2005
).
12.
S. D.
Park
,
D. H.
Lee
, and
G. Y.
Yeom
,
Electrochem. Solid-State Lett.
8
,
C106
(
2005
).
13.
D. J.
Economou
,
J. Phys. D: Appl. Phys.
41
,
024001
(
2008
).
14.
S. D.
Park
,
C. K.
Oh
,
D. H.
Lee
, and
G. Y.
Yeom
,
Electrochem. Solid-State Lett.
8
,
C177
(
2005
).
15.
H. J.
Yun
,
T. H.
Kim
,
C. B.
Shin
,
C.-K.
Kim
,
J.-H.
Min
, and
S. H.
Moon
,
Korean J. Chem. Eng.
24
,
670
(
2007
).
16.
A.
Agarwal
and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
27
,
37
(
2009
).
17.
K.
Suzue
,
T.
Matsuura
,
J.
Murota
,
Y.
Sawada
, and
T.
Ohmi
,
Appl. Surf. Sci.
82–83
,
422
(
1994
).
18.
S. D.
Athavale
and
D. J.
Economou
,
J. Vac. Sci. Technol. A
13
,
966
(
1995
).
19.
J. R.
Vella
,
D.
Humbird
, and
D. B.
Graves
,
J. Vac. Sci. Technol. A
40
,
023205
(
2022
).
20.
Y.
Rho
 et al,
Nat. Electron.
5
,
505
(
2022
).
21.
B. Y.
Han
,
C. Y.
Cha
, and
J. H.
Weaver
,
J. Vac. Sci. Technol. A
16
,
490
(
1998
).
22.
P. A.
Maki
and
D. J.
Ehrlich
,
Appl. Phys. Lett.
55
,
91
(
1989
).
23.
T.
Baller
,
D. J.
Oostra
,
A. E.
de Vries
, and
G. N. A.
van Veen
,
J. Appl. Phys.
60
,
2321
(
1986
).
24.
H.
Okano
,
Y.
Horiike
, and
M.
Sekine
,
Jpn. J. Appl. Phys.
24
,
68
(
1985
).
25.
R.
Kullmer
and
D.
Bäuerle
,
Appl. Phys. A
43
,
227
(
1987
).
26.
P. H.
Bucksbaum
and
J.
Bokor
,
Phys. Rev. Lett.
53
,
182
(
1984
).
27.
L.
Haji
,
P.
Joubert
,
J.
Stoemenos
, and
N. A.
Economou
,
J. Appl. Phys.
75
,
3944
(
1994
).
28.
M.
Hatano
,
S.
Moon
,
M.
Lee
,
K.
Suzuki
, and
C. P.
Grigoropoulos
,
J. Appl. Phys.
87
,
36
(
2000
).
29.
P.
Brichon
,
E.
Despiau-Pujo
, and
O.
Joubert
,
J. Vac. Sci. Technol. A
32
,
021301
(
2014
).
30.
U.
Loeschner
,
J.
Schille
,
A.
Streek
,
T.
Knebel
,
L.
Hartwig
,
R.
Hillmann
, and
C.
Endisch
,
J. Laser Appl.
27
,
S29303
(
2015
).

Supplementary Material

You do not currently have access to this content.