The ability to precisely form Si3N4 spacers is critical to the success of dynamic random-access memory and NAND (NOT AND) flash memory technology development. In this study, we investigated the mechanisms and process windows of an innovative two-step nitride (Si3N4) etch consisting of H2 plasma processing in an inductively coupled plasma chamber followed by either buffered oxide etch (BOE, a mix of NH4F and HF solution) wet clean or in situ NF3 plasma etch. We obtained layer–by-layer removal with each layer’s removal capable of more than 10 nm. We revealed that H can penetrate more than 20 nm deep into the nitride film to transform pristine Si3N4 into SiON after air exposure, which can be subsequently removed by BOE wet clean. The H2 and BOE steps do not need to run back-to-back; the modified SiON layer is stable enough to sustain elevated temperature processing and can be removed by BOE later down-the-line integration. We also demonstrated that using NF3 plasma can have highly selective etch of nitride over oxide due to the incubation time difference between these two types of films. It takes much longer time to initiate the chemical reaction for oxide compared with nitride. Critically, the role of H2 is not the key for high selectivity; instead, it provides an etch directionality and shortens the incubation time for both nitride and oxide.

1.
G.
Antoun
,
T.
Tillocher
,
P.
Lefaucheux
,
J.
Faguet
,
K.
Maekawa
, and
R.
Dussart
,
Sci. Rep.
11
,
357
(
2021
).
2.
C.
Li
,
D.
Metzler
,
C. S.
Lai
,
E. A.
Hudson
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
34
,
041307
(
2016
).
3.
A.
Hirata
,
M.
Fukasawa
,
K.
Kugimiya
,
K.
Nagaoka
,
K.
Karahashi
,
S.
Hamaguchi
, and
H.
Iwamoto
,
J. Vac. Sci. Technol. A
38
,
062601
(
2020
).
4.
A.
Hirata
,
M.
Fukasawa
,
J. U.
Tercero
,
K.
Kugimiya
,
Y.
Hagimoto
,
K.
Karahashi
,
S.
Hamaguchi
, and
H.
Iwamoto
,
Jpn. J. Appl. Phys.
61
,
066002
(
2022
).
5.
W.-H.
Kim
,
D.
Sung
,
S.
Oh
,
J.
Woo
,
S.
Lim
,
H.
Lee
, and
S. F.
Bent
,
J. Vac. Sci. Technol. A
36
,
01B104
(
2018
).
6.
Y.
Ishii
,
K.
Okuma
,
T.
Saldana
,
K.
Maeda
,
N.
Negishi
, and
J.
Manos
,
Jpn. J. Appl. Phys.
56
,
06HB07
(
2017
).
7.
A. I.
Abdulagatov
and
S. M.
George
,
J. Vac. Sci. Technol. A
38
,
022607
(
2020
).
8.
R. J.
Taylor
,
J. Nucl. Mater.
76–77
,
41
(
1978
).
9.
M.
Bruel
, U.S. patent 5374564 (20 December 1994).
10.
M.
Honda
,
T.
Katsunuma
,
S.
Kumakura
,
T.
Hisamatsu
, and
Y.
Kihara
, “
Advanced etch technology for nanopatterning IX
,”
Proc. SPIE
11329
,
1
11
(
2020
).
11.
C.
Jiang
,
L. P.
Zhou
,
K.
Peng
,
J. J.
Zhu
, and
D. Y.
Li
,“Effect of H2 on microstructures and properties of AlN films deposited by reactive magnetron sputtering,”
Advanced Engineering Materials III, Proceedings for the 3rd International Conference on Advanced Engineering Materials and Technology
(
AEMT
,
2013
).
12.
Z.
Tokei
,
M.
Baklanov
,
I.
Ciofi
,
Y.
Li
, and
A.
Urbanowicz
,
Semicond. Fabtech
35
, 1–6 (
2008
).
13.
H. J.
Woo
,
W.
Hong
, and
W. B.
Choi
, in
Proceedings of APAC 2004
(PAL,
Gyeongju
,
2004
), p.
435
.
14.
T.
Hochbauer
, “
On the mechanisms of hydrogen implantation induced silicon surface layer cleavage
,”
thesis
(The Philipps University of Marburg, Germany,
2001
).
15.
A. Y.
Usenko
and
W. N.
Carr
, “Hydrogenation of trap layer as an SOI process step,”
2000 IEEE International SOI Conference Proceedings
(IEEE,
2000
), pp. 16–17.
16.
J.
Borland
,
S.
Shishiguchi
,
A.
Mineji
,
W.
Krull
,
D.
Jacobson
,
M.
Tanjyo
,
W.
Lerch
,
S.
Paul
,
J.
Gelpey
,
S.
McCoy
,
J.
Venturini
,
M.
Current
,
V.
Faifer
,
R.
Hillard
,
M.
Benjamin
,
T.
Walker
,
A.
Buczkowski
,
Z.
Li
, and
J.
Chen
, “High dopant activation and low damage P+ USJ Formation,”
AIP Conference Proceedings
866
, 96 (
2006
).
17.
O.
Moutanabbir
,
B.
Terreault
,
N.
Desrosiers
,
A.
Giguère
,
G. G.
Ross
,
M.
Chicoine
, and
F.
Schiettekatte
,
AIP Conf. Proc.
772
,
1491
(
2005
).
18.
N.
Posseme
,
O.
Joubert
, and
L.
Valier
, U.S. patent 9570317 (14 February 2017).
19.
V.
Renaud
,
C.
Petit-Etienne
,
J.-P.
Barnes
,
J.
Bisserier
,
O.
Joubert
, and
E.
Pargon
,
J. Appl. Phys.
126
,
243301
(
2019
).
20.
A.
Ranjan
,
M.
Wang
,
S. D.
Sherpa
,
V.
Rastogi
,
A.
Koshiishi
, and
P. L. G.
Ventzek
,
J. Vac. Sci. Technol. A
34
,
031304
(
2016
).
21.
S.
Sherpa
and
A.
Ranjan
,
J. Vac. Sci. Technol. A
35
,
01A102
(
2017
).
22.
X. F.
Lin
,
A.
Fucsko
,
K.
Noehring
,
E.
Gabriel
,
A.
Regner
,
S.
York
, and
D.
Palsulich
,
J. Vac. Sci. Technol. B
40
,
014003
(
2022
).
23.
See https://www.lamresearch.com/product/kiyo-product-family/(2022) for information about reactive ion etch.
24.
K.
Nojiri
,
Dry Etching Technology for Semiconductors
(
Springer International Publishing
,
Cham
,
2015
), pp.
57
71
.
25.
See https://www.stella-chemifa.co.jp/english/(2022) for information about buffered oxide etch web clean.
26.
PHI Quantes XPS
, see https://www.ulvac-phi.com/en/products/xps/quantes/(2022) for information about Scanning X-Ray Microprobe system.
27.
R. H. J.
Vervuurt
,
B.
Mukherjee
,
K.
Nakane
,
T.
Tsutsumi
,
M.
Hori
, and
N.
Kobayashi
,
Langmuir
37
,
12663
(
2021
).
28.
K.
Nakane
,
R. H. J.
Vervuurt
,
T.
Tsutsumi
,
N.
Kobayashi
, and
M.
Hori
,
ACS Appl. Mater. Interfaces
11
,
37263
(
2019
).
29.
V.
Martirosyan
, “
Atomistic simulations of H2 and He plasmas modification of thin-films materials for advanced etch processes
,”
Ph.D. thesis
(Université Grenoble Alpes,
2017
).
30.
C.
Steinbrüchel
,
Appl. Phys. Lett.
55
,
1960
(
1989
).
31.
J.
Li
,
Y.
Kim
,
S.
Han
, and
H.
Chae
,
Materials
14
,
2941
(
2021
).
32.
O. A.
Podsvirov
,
P. A.
Karaseov
,
A. Y.
Vinogradov
,
A. Y.
Azarov
,
N. N.
Karasev
,
A. S.
Smirnov
,
A. I.
Titov
, and
K. V.
Karabeshkin
,
J. Surf. Invest. X-ray, Synchrotron Neutron Tech.
4
,
241
(
2010
).
33.
J.
Paul
,
S.
Riedel
,
M.
Rudolph
,
S.
Wege
,
M.
Czernohorsky
,
J.
Sundqvist
,
C.
Hohle
, and
V.
Beyer
,
Thin Solid Films
520
,
4527
(
2012
).
34.
S. S.
Kaler
,
Q.
Lou
,
V. M.
Donnelly
, and
D. J.
Economou
,
J. Phys. D: Appl. Phys.
50
,
234001
(
2017
).
35.
D.
Metzler
,
C.
Li
,
S.
Engelmann
,
R. L.
Bruce
,
E. A.
Joseph
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
34
,
01B102
(
2015
).
36.
C. M.
Huard
,
S.
Sriraman
,
A.
Paterson
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
36
,
01B101
(
2016
).
You do not currently have access to this content.