Electron-stimulated etching of surfaces functionalized by remote plasma is a flexible and novel approach for material removal. In comparison with plasma dry etching, which uses the ion-neutral synergistic effect to control material etching, electron beam-induced etching (EBIE) uses an electron-neutral synergistic effect. This approach appears promising for the reduction of plasma-induced damage (PID), including atomic displacement and lateral straggling, along with the potential for greater control and lateral resolution. One challenge for EBIE is the limited selection of chemical precursor molecules that can be used to produce functionalized materials suitable for etching under electron beam irradiation. In this work, we studied a new experimental approach that utilizes a remote plasma source to functionalize substrate surfaces in conjunction with electron beam irradiation by an electron flood gun. Etching rates (ERs) of SiO2, Si3N4, and poly-Si are reported in a broad survey of processing conditions. The parametric dependence of the ER of these Si-based materials on the operating parameters of the flood gun and the remote plasma source is evaluated. We also identified the processing parameters that enable the realization of material selective removal, i.e., the etching selectivity of Si3N4 over SiO2 and poly-Si over SiO2. Additionally, surface characterization of etched materials is used to clarify the effects of the co-introduction of particle fluxes from the remote plasma and flood gun sources on surface chemistry.

1.
V. M.
Donnelly
and
A.
Kornblit
,
J. Vac. Sci. Technol. A
31
,
050825
(
2013
).
2.
K.
Nojiri
,
Dry Etching Technology for Semiconductors
(
Springer International Publishing
,
New York
,
2015
).
3.
H.
Xiao
,
3D IC Devices, Technologies, and Manufacturing
(
SPIE
,
Bellingham
,
WA
,
2016
).
4.
K.
Ishikawa
 et al,
Jpn. J. Appl. Phys.
56
,
06ha02
(
2017
).
5.
N.
Loubet
 et al, paper presented at the
2017 Symposium on VLSI Technology
,
Kyoto, Japan
, 5–8 June 2017.
6.
G. S.
Oehrlein
,
D.
Metzler
, and
C.
Li
,
ECS J. Solid State Sci.
4
,
N5041
(
2015
).
7.
C. T.
Carver
,
J. J.
Plombon
,
P. E.
Romero
,
S.
Suri
,
T. A.
Tronic
, and
R. B.
Turkot
,
ECS J. Solid State Sci.
4
,
N5005
(
2015
).
8.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
9.
S. U.
Engelmann
,
R. L.
Bruce
,
M.
Nakamura
,
D.
Metzler
,
S. G.
Walton
, and
E. A.
Joseph
,
ECS J. Solid State Sci.
4
,
N5054
(
2015
).
10.
R. J.
Gasvoda
,
Z.
Zhang
,
S.
Wang
,
E. A.
Hudson
, and
S.
Agarwal
,
J. Vac. Sci. Technol. A
38
,
050803
(
2020
).
11.
T.
Faraz
,
F.
Roozeboom
,
H. C. M.
Knoops
, and
W. M. M.
Kessels
,
ECS J. Solid State Sci.
4
,
N5023
(
2015
).
12.
G. S.
Oehrlein
and
J. F.
Rembetski
,
IBM J. Res. Develop.
36
,
140
(
1992
).
13.
G. S.
Oehrlein
,
Mater. Sci. Eng. B
4
,
441
(
1989
).
14.
M.
Matsui
,
T.
Tatsumi
, and
M.
Sekine
,
J. Vac. Sci. Technol. A
19
,
1282
(
2001
).
15.
K.
Eriguchi
,
J. Phys. D: Appl. Phys.
50
,
333001
(
2017
).
16.
J. W.
Coburn
and
H. F.
Winters
,
J. Appl. Phys.
50
,
3189
(
1979
).
17.
T.
Bret
,
T.
Hofmann
, and
K.
Edinger
,
Appl. Phys. A
117
,
1607
(
2014
).
18.
S. J.
Randolph
,
J. D.
Fowlkes
, and
P. D.
Rack
,
Crit. Rev. Solid State Mater. Sci.
31
,
55
(
2006
).
19.
I.
Utke
,
P.
Hoffmann
, and
J.
Melngailis
,
J. Vac. Sci. Technol. B
26
,
1197
(
2008
).
20.
S. M.
Ivo Utke
and
Phillip
Russell
,
Nanofabrication Using Focused Ion and Electron Beams
(
Oxford University
,
2012
).
21.
A. A.
Martin
and
M.
Toth
,
ACS Appl. Mater. Interfaces
6
,
18457
(
2014
).
22.
K.-Y.
Lin
,
C.
Preischl
,
C. F.
Hermanns
,
D.
Rhinow
,
H.-M.
Solowan
,
M.
Budach
,
K.
Edinger
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
40
,
063004
(
2022
).
23.
K.
Edinger
 et al,
J. Vac. Sci. Technol. B
22
,
2902
(
2004
).
24.
H.
Abe
,
M.
Yoneda
, and
N.
Fujlwara
,
Jpn. J. Appl. Phys.
47
,
1435
(
2008
).
25.
K.
Ishikawa
,
K.
Karahashi
,
T.
Ishijima
,
S. I.
Cho
,
S.
Elliott
,
D.
Hausmann
,
D.
Mocuta
,
A.
Wilson
, and
K.
Kinoshita
,
Jpn. J. Appl. Phys.
57
,
06ja01
(
2018
).
26.
R.
Hippler
,
J.
Kredl
, and
V.
Vartolomei
,
Vacuum
83
,
732
(
2008
).
27.
C.
Li
,
V.
Godyak
,
T.
Hofmann
,
K.
Edinger
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
38
,
033001
(
2020
).
28.
C.
Li
,
T.
Hofmann
,
K.
Edinger
,
V.
Godyak
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. B
38
,
032208
(
2020
).
29.
J. J.
Beulens
,
B. E. E.
Kastenmeier
,
P. J.
Matsuo
, and
G. S.
Oehrlein
,
Appl. Phys. Lett.
66
,
2634
(
1995
).
30.
B. E. E.
Kastenmeier
,
P. J.
Matsuo
,
J. J.
Beulens
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
14
,
2802
(
1996
).
31.
G. S.
Oehrlein
,
P. J.
Matsuo
,
M. F.
Doemling
,
N. R.
Rueger
,
B. E. E.
Kastenmeier
,
M.
Schaepkens
,
T.
Standaert
, and
J. J.
Beulens
,
Plasma Sources Sci. Technol.
5
,
193
(
1996
).
32.
P. J.
Matsuo
,
B. E. E.
Kastenmeier
,
J. J.
Beulens
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
15
,
1801
(
1997
).
33.
B.
Pfeiffer
,
J. Appl. Phys.
37
,
1624
(
1966
).
34.
N. A.
Morrison
,
S.
Muhl
,
S. E.
Rodil
,
A. C.
Ferrari
,
M.
Nesladek
,
W. I.
Milne
, and
J.
Robertson
,
Phys. Status Solidi A
172
,
79
(
1999
).
35.
N. A.
Morrison
,
S. E.
Rodil
,
A. C.
Ferrari
,
J.
Robertson
, and
W. I.
Milne
,
Thin Solid Films
337
,
71
(
1999
).
36.
H.
Oechsner
,
Vacuum
83
,
727
(
2008
).
37.
H.
Tompkins
and
E. A.
Irene
,
Handbook of Ellipsometry
(
William Andrew
,
Norwich
,
NY
,
2005
).
38.
S. W.
Robey
and
G. S.
Oehrlein
,
Surf. Sci.
210
,
429
(
1989
).
39.
T. E. F. M.
Standaert
,
M.
Schaepkens
,
N. R.
Rueger
,
P. G. M.
Sebel
,
G. S.
Oehrlein
, and
J. M.
Cook
,
J. Vac. Sci. Technol. A
16
,
239
(
1998
).
40.
Y.-R.
Luo
,
Comprehensive Handbook of Chemical Bond Energies
(
CRC
,
Boca Raton
,
2007
).
41.
M. J.
Vasile
and
F. A.
Stevie
,
J. Appl. Phys.
53
,
3799
(
1982
).
42.
H. F.
Winters
and
I. C.
Plumb
,
J. Vac. Sci. Technol. B
9
,
197
(
1991
).
43.
P.
Arora
,
T.
Nguyen
,
A.
Chawla
,
S.-K.
Nam
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. A
37
,
061303
(
2019
).
44.
M. G.
Lassiter
,
T.
Liang
, and
P. D.
Rack
,
J. Vac. Sci. Technol. B
26
,
963
(
2008
).
45.
L. G.
Christophorou
,
J. K.
Olthoff
, and
M. V. V. S.
Rao
,
J. Phys. Chem. Ref. Data
25
,
1341
(
1996
).
46.
L. G.
Christophorou
and
J. K.
Olthoff
,
J. Phys. Chem. Ref. Data
28
,
967
(
1999
).
47.
L. G.
Christophorou
and
J. K.
Olthoff
,
Appl. Surf. Sci.
192
,
309
(
2002
).
48.
S. J.
Randolph
,
J. D.
Fowlkes
, and
P. D.
Rack
,
J. Appl. Phys.
98
,
034902
(
2005
).
49.
J. W.
Mcconkey
,
C. P.
Malone
,
P. V.
Johnson
,
C.
Winstead
,
V.
Mckoy
, and
I.
Kanik
,
Phys. Rep.
466
,
1
(
2008
).
50.
S.
Muhl
and
A.
Pérez
,
Thin Solid Films
579
,
174
(
2015
).
51.
R. R.
Laher
and
F. R.
Gilmore
,
J. Phys. Chem. Ref. Data
19
,
277
(
1990
).
52.
Y.
Itikawa
,
J. Phys. Chem. Ref. Data
38
,
1
(
2009
).
53.
P.
Collot
,
G.
Gautherin
,
B.
Agius
,
S.
Rigo
, and
F.
Rochet
,
Philos. Mag. B
52
,
1051
(
1985
).
54.
D.
Metzler
,
R. L.
Bruce
,
S.
Engelmann
,
E. A.
Joseph
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
32
,
020603
(
2014
).
55.
D.
Metzler
,
C.
Li
,
S.
Engelmann
,
R. L.
Bruce
,
E. A.
Joseph
, and
G. S.
Oehrlein
,
J. Chem. Phys.
146
,
052801
(
2017
).
56.
R. J.
Gasvoda
,
A. W.
Van De Steeg
,
R.
Bhowmick
,
E. A.
Hudson
, and
S.
Agarwal
,
ACS Appl. Mater. Interfaces
9
,
31067
(
2017
).
57.
N.
Vanhove
,
P.
Lievens
, and
W.
Vandervorst
,
Phys. Rev. B
79
,
035305
(
2009
).
You do not currently have access to this content.