Plasmas generated over and under the surface of water have immense scope for wastewater remediation due to in situ generation of redox-rich species. Remediation of simulated wastewater using underwater plasma discharge is reported in this paper. During the plasma discharge, an increase in energy coupling from source to discharge channel was noted with an increase in the applied pulsed DC voltage from 5 to 9kV. Higher energy coupling resulted in elevation of gas temperature and electron temperature. Concentrations of hydroxyl radicals and hydrogen peroxide, estimated spectrochemically in effluent water, also increased with the applied voltage. On the other hand, ozone concentration showed a decreasing trend with increasing applied voltage and the peak ozone density was obtained at the lower end of the applied voltage, i.e., at 5kV. With higher energy dissipation, a pronounced discharge and, hence, greater emission intensities of ultraviolet radiation, atomic oxygen, and atomic hydrogen were observed in discharge spectra. The oxidative-reductive stress produced by underwater discharge resulted in a degradation efficiency of 75.5% for methylene blue solution (thiazine dye) corresponding to energy yields of 3.55g/kWh. Similarly, the degradation efficiency of 81.4% for methyl orange solution (azo dye) with an energy yield of 4.73g/kWh was achieved with this discharge. From the considerations of collision theory, activation energies of 67.17kJ/mol for methylene blue and 75.32kJ/mol for methyl orange degradation were estimated for the plasma discharge. Fourier-transform infrared spectroscopy was utilized to further reveal the possible effects of plasma therapy on different bonds of the dyes. Additionally, gas chromatography mass spectrometry analyses were used to suggest the possible degradation pathways of the two dyes. Instant dye degradation in flowing samples was compared with contemporary dye degradation results listed in literature to show the effectiveness of the used technique.

1.
J. A.
Garrido-Cardenas
,
B.
Esteban-García
,
A.
Agüera
,
J. A.
Sánchez-Pérez
, and
F.
Manzano-Agugliaro
,
Int. J. Environ. Res. Public Health
17
,
170
(
2020
).
2.
J. E.
Foster
,
Phys. Plasmas
24
,
055501
(
2017
).
3.
A.
Fennell
, Government Accountability Office, Tech. Rep. GAO-14-430 (
2014
).
4.
T. A.
Kurniawan
,
Z.
Mengting
,
D.
Fu
,
S. K.
Yeap
,
M. H. D.
Othman
,
R.
Avtar
, and
T.
Ouyang
,
J. Environ. Manag.
270
,
110871
(
2020
).
5.
P. Y.
He
,
Y. J.
Zhang
,
H.
Chen
, and
L. C.
Liu
,
J. Cleaner Prod.
208
,
1476
(
2019
).
6.
S.
Xia
,
L.
Zhang
,
G.
Pan
,
P.
Qian
, and
Z.
Ni
,
Phys. Chem. Chem. Phys.
17
,
5345
(
2015
).
7.
C. H.
Nguyen
,
C.-C.
Fu
, and
R.-S.
Juang
,
J. Cleaner Prod.
202
,
413
(
2018
).
8.
W.
Li
,
B.
Mu
, and
Y.
Yang
,
Bioresour. Technol.
277
,
157
(
2019
).
9.
H.
Zollinger
,
Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments
(
John Wiley & Sons
, Weinheim, Germany,
2003
).
10.
A.
Houas
,
H.
Lachheb
,
M.
Ksibi
,
E.
Elaloui
,
C.
Guillard
, and
J.-M.
Herrmann
,
Appl. Catal. B
31
,
145
(
2001
).
11.
A.
Chithambararaj
,
N.
Sanjini
,
S.
Velmathi
, and
A. C.
Bose
,
Phys. Chem. Chem. Phys.
15
,
14761
(
2013
).
12.
V.
Katheresan
,
J.
Kansedo
, and
S. Y.
Lau
,
J. Environ. Chem. Eng.
6
,
4676
(
2018
).
13.
M. C.
García
,
M.
Mora
,
D.
Esquivel
,
J. E.
Foster
,
A.
Rodero
,
C.
Jiménez-Sanchidrián
, and
F. J.
Romero-Salguero
,
Chemosphere
180
,
239
(
2017
).
14.
A.
Ajmal
,
I.
Majeed
,
R. N.
Malik
,
H.
Idriss
, and
M. A.
Nadeem
,
RSC Adv.
4
,
37003
(
2014
).
15.
M.
Cheng
 et al,
Water Res.
138
,
7
(
2018
).
16.
T.
Robinson
,
G.
McMullan
,
R.
Marchant
, and
P.
Nigam
,
Bioresour. Technol.
77
,
247
(
2001
).
17.
H.
Nishiyama
,
K.
Niinuma
,
S.
Shinoki
, and
H.
Takana
,
Plasma Chem. Plasma Process.
35
,
339
(
2015
).
18.
J.
Zeng
,
B.
Yang
,
X.
Wang
,
Z.
Li
,
X.
Zhang
, and
L.
Lei
,
Chem. Eng. J.
267
,
282
(
2015
).
19.
O.
Amiri
,
N.
Mir
,
F.
Ansari
, and
M.
Salavati-Niasari
,
Electrochim. Acta
252
,
315
(
2017
).
20.
Ö.
Kerkez
and
İ.
Boz
,
Chem. Eng. Commun.
202
,
534
(
2015
).
21.
M. A.
Mahadik
,
G. W.
An
,
S.
David
,
S. H.
Choi
,
M.
Cho
, and
J. S.
Jang
,
Appl. Surf. Sci.
426
,
833
(
2017
).
22.
U.
Alam
,
S.
Kumar
,
D.
Bahnemann
,
J.
Koch
,
C.
Tegenkamp
, and
M.
Muneer
,
Phys. Chem. Chem. Phys.
20
,
4538
(
2018
).
23.
L.
Li
,
X.
Sun
,
T.
Xian
,
H.
Gao
,
S.
Wang
,
Z.
Yi
,
X.
Wu
, and
H.
Yang
,
Phys. Chem. Chem. Phys.
24
,
8279
(
2022
).
24.
F.
Huang
,
M.
Luo
,
L.
Cui
, and
G.
Wu
,
Korean J. Chem. Eng.
32
,
268
(
2015
).
25.
F.
Ji
,
C.
Li
,
J.
Zhang
, and
L.
Deng
,
Desalination
269
,
284
(
2011
).
26.
B.
Wang
,
B.
Dong
,
M.
Xu
,
C.
Chi
, and
C.
Wang
,
Chem. Eng. Sci.
168
,
90
(
2017
).
27.
W.
An
,
K.
Baumung
, and
H.
Bluhm
,
J. Appl. Phys.
101
,
053302
(
2007
).
28.
W.
Hoeben
,
P.
Van Ooij
,
D.
Schram
,
T.
Huiskamp
,
A.
Pemen
, and
P.
Lukeš
,
Plasma Chem. Plasma Process.
39
,
597
(
2019
).
29.
J.-L.
Brisset
and
J.
Pawlat
,
Plasma Chem. Plasma Process.
36
,
355
(
2016
).
30.
J.
Julák
,
A.
Hujacová
,
V.
Scholtz
,
J.
Khun
, and
K.
Holada
,
Plasma Phys. Rep.
44
,
125
(
2018
).
31.
Z.
Chen
,
Y. E.
Krasik
,
S.
Cousens
,
A. T.
Ambujakshan
,
C.
Corr
, and
X. J.
Dai
,
J. Appl. Phys.
122
,
153303
(
2017
).
32.
R.
Zhou
,
R.
Zhou
,
P.
Wang
,
Y.
Xian
,
A.
Mai-Prochnow
,
X.
Lu
,
P.
Cullen
,
K. K.
Ostrikov
, and
K.
Bazaka
,
J. Phys. D: Appl. Phys.
53
,
303001
(
2020
).
33.
H.
Xu
,
C.
Chen
,
D.
Liu
,
D.
Xu
,
Z.
Liu
,
X.
Wang
, and
M. G.
Kong
,
J. Phys. D: Appl. Phys.
50
,
245201
(
2017
).
34.
M.
Rashid
,
M.
Chowdhury
, and
M.
Talukder
,
J. Environ. Chem. Eng.
8
,
104504
(
2020
).
35.
W.
Jiacun
,
W.
Kaiyue
,
R.
Chenhua
,
J.
Pengying
, and
L.
Xuechen
,
Plasma Sci. Technol.
22
,
055505
(
2020
).
36.
T. P.
Kasih
,
A.
Kharisma
,
M. K.
Perdana
,
P. P.
Pontororing
, and
D.
Mangindaan
,
Presented at the IOP Conference Series: Earth and Environmental Science, Alam Sutera Tangerang, Indonesia, 5–6 September 2018
(IOP, Philadelphia, 2018)
37.
A.
Hamdan
,
J.-L.
Liu
, and
M. S.
Cha
,
Plasma Chem. Plasma Process.
38
,
1003
(
2018
).
38.
A.
Khlyustova
,
A.
Grosheva
,
N.
Sirotkin
, and
D.
Panova
,
SN Appl. Sci.
1
,
1
(
2019
).
39.
M.
Farooq
,
M. I.
Khan
, and
N.
Rehman
,
Plasma Chem. Plasma Process.
42,
1
(
2022
).
40.
H.
Akiyama
,
IEEE Trans. Dielectr. Electr. Insul.
7
,
646
(
2000
).
41.
M.
Farooq
,
U.
Ijaz
,
Z.
Anjum
, and
N. U.
Rehman
,
IEEE Trans. Plasma Sci.
50
,
942
(
2022
).
42.
P.
Lukes
,
M.
Clupek
,
V.
Babicky
, and
P.
Sunka
,
Plasma Sources Sci. Technol.
17
,
024012
(
2008
).
43.
R.
Xiong
,
A.
Nikiforov
,
P.
Vanraes
, and
C.
Leys
,
J. Adv. Oxid. Technol.
15
,
197
(
2012
).
44.
S.-W.
Liu
,
Y.
Liu
,
Y.-J.
Ren
,
F.-C.
Lin
,
H.
Li
, and
Y.
Zhao
,
J. Appl. Phys.
127
,
143301
(
2020
).
45.
A.
Goldman
and
J. R.
Gillis
,
J. Quant. Spectrosc. Radiat. Transfer
25
,
111
(
1981
).
46.
G.
Dieke
and
H.
Crosswhite
,
J. Quant. Spectrosc. Radiat. Transfer
2
,
97
(
1962
).
47.
H.
Griem
, “Spectral line broadening by plasmas,” in Plasma Spectroscopy (McGraw-Hill, New York, 1964).
48.
B.
Sismanoglu
,
K.
Grigorov
,
R.
Caetano
,
M.
Rezende
, and
Y.
Hoyer
,
Eur. Phys. J. D
60
,
505
(
2010
).
49.
M. A.
Gigosos
and
V.
Cardeñoso
,
J. Phys. B: At. Mol. Opt. Phys.
29
,
4795
(
1996
).
50.
A.
Von Keudell
,
K.
Grosse
, and
V.
Schulz-von der Gathen
,
Plasma Sources Sci. Technol.
29
,
085021
(
2020
).
51.
R. D.
Cowan
and
G. H.
Dieke
,
Rev. Mod. Phys.
20
,
418
(
1948
).
52.
C. O.
Laux
,
T.
Spence
,
C.
Kruger
, and
R.
Zare
,
Plasma Sources Sci. Technol.
12
,
125
(
2003
).
53.
H.
Fischer
,
J. Opt. Soc. Am.
43
,
394
(
1953
).
54.
P.
Bruggeman
,
F.
Iza
,
P.
Guns
,
D.
Lauwers
,
M. G.
Kong
,
Y. A.
Gonzalvo
,
C.
Leys
, and
D. C.
Schram
,
Plasma Sources Sci. Technol.
19
,
015016
(
2009
).
55.
P.
Bruggeman
,
D. C.
Schram
,
M. G.
Kong
, and
C.
Leys
,
Plasma Processes Polym.
6
,
751
(
2009
).
56.
A. Y.
Nikiforov
,
C.
Leys
,
L.
Li
,
L.
Nemcova
, and
F.
Krcma
,
Plasma Sources Sci. Technol.
20
,
034008
(
2011
).
57.
B. R.
Locke
and
K.-Y.
Shih
,
Plasma Sources Sci. Technol.
20
,
034006
(
2011
).
58.
A.
Yehia
,
J. Appl. Phys.
101
,
023306
(
2007
).
59.
B.
Jiang
,
J.
Zheng
,
S.
Qiu
,
M.
Wu
,
Q.
Zhang
,
Z.
Yan
, and
Q.
Xue
,
Chem. Eng. J.
236
,
348
(
2014
).
60.
J.
Staehelin
and
J.
Hoigne
,
Environ. Sci. Technol.
16
,
676
(
1982
).
61.
M.
Magureanu
,
D.
Dobrin
,
N. B.
Mandache
,
C.
Bradu
,
A.
Medvedovici
, and
V. I.
Parvulescu
,
Plasma Processes Polym.
10
,
459
(
2013
).
62.
M. W.
Dong
and
J.
Wysocki
,
LCGC North Am.
37
,
750
(
2019
).
63.
D.
Harvey
,
Modern Analytical Chemistry
(
McGraw-Hill
,
New York
,
2000
).
64.
L.
Wu
,
Q.
Xie
,
Y.
Lv
,
Z.
Wu
,
X.
Liang
,
M.
Lu
, and
Y.
Nie
,
Water
11
,
1818
(
2019
).
65.
R.
Zhou
 et al,
Sci. Total Environ.
750
,
142295
(
2021
).
66.
F.
Huang
,
L.
Chen
,
H.
Wang
, and
Z.
Yan
,
Chem. Eng. J.
162
,
250
(
2010
).
67.
K. A.
Connors
,
Chemical Kinetics: the Study of Reaction Rates in Solution
(
Wiley-VCH Verlag GmbH
, New York,
1990
).
68.
H.
Wang
,
P.
Zhou
,
R.
Guo
,
Y.
Wang
,
H.
Zhan
, and
Y.
Yuan
,
Catalysts
8
,
107
(
2018
).
69.
S.
Muruganantham
,
G.
Anbalagan
, and
N.
Ramamurthy
,
Romanian J. Biophys.
19
,
285
(
2009
).
70.
D.
Baena-Baldiris
,
A.
Montes-Robledo
, and
R.
Baldiris-Avila
,
ACS Omega
5
,
28146
(
2020
).
71.
D. C.
Kalyani
,
A. A.
Telke
,
S. P.
Govindwar
, and
J. P.
Jadhav
,
Water Environ. Res.
81
,
298
(
2009
).
72.
W.
Sang
,
J.
Cui
,
Y.
Feng
,
L.
Mei
,
Q.
Zhang
,
D.
Li
, and
W.
Zhang
,
Chemosphere
223
,
416
(
2019
).
73.
A. P.
Batista
,
H. W. P.
Carvalho
,
G. H.
Luz
,
P. F.
Martins
,
M.
Gonçalves
, and
L. C.
Oliveira
,
Environ. Chem. Lett.
8
,
63
(
2010
).
74.
S.
Hisaindee
,
M.
Meetani
, and
M.
Rauf
,
Trends Anal. Chem.
49
,
31
(
2013
).
75.
J. M.
Small
and
H.
Hintelmann
,
Anal. Bioanal. Chem.
387
,
2881
(
2007
).
76.
M. S. I.
Khan
,
E.-J.
Lee
, and
Y.-J.
Kim
,
AIP Adv.
5
,
107111
(
2015
).
77.
F.
De Baerdemaeker
,
M.
Šimek
, and
C.
Leys
,
J. Phys. D: Appl. Phys.
40
,
2801
(
2007
).
78.
H.
Bader
and
J.
Hoigné
,
Water Res.
15
,
449
(
1981
).
79.
S. B.
Gupta
, approved dissertation, Institute for High Power Pulse and Microwave Technology (
2007
).
80.
J.
Lai
and
J. E.
Foster
,
IEEE Trans. Plasma Sci.
47
,
4422
(
2019
).
You do not currently have access to this content.