Area-selective atomic layer deposition (AS-ALD) of thin films is considered as a promising approach to reduce the manufacturing costs of integrated devices and continue their miniaturization. In this work, the ALD growth of ZnO is studied using a polymeric inhibiting layer deposited by initiated chemical vapor deposition (iCVD). It is shown that poly(neopentyl methacrylate) [P(npMA)] is a very good inhibiting layer for ALD growth of zinc oxide from diethylzinc and water. For example, 12 nm of P(npMA) permit us to inhibit up to 100 nm of ZnO. The need for a minimum polymer thickness due to possible diffusion of the precursor in the polymer layer is also highlighted. Finally, our work shows that the same iCVD polymer can also inhibit the ALD growth of SnO2. This work paves the way for the realization of AS-ALD of transparent conducting oxide using a full vacuum-based approach.

1.
R. L.
Hoffman
,
B. J.
Norris
, and
J. F.
Wager
,
Appl. Phys. Lett.
82
,
733
(
2003
).
2.
Ü.
Özgür
,
Y. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Doğan
,
V.
Avrutin
,
S.-J.
Cho
, and
H.
Morkoç
,
J. Appl. Phys.
98
,
041301
(
2005
).
3.
J.
Shi
,
J.
Zhang
,
L.
Yang
,
M.
Qu
,
D.-C.
Qi
, and
K. H. L.
Zhang
,
Adv. Mater.
33
,
2006230
(
2021
).
4.
A. I.
Hofmann
,
E.
Cloutet
, and
G.
Hadziioannou
,
Adv. Electron. Mater.
4
,
1700412
(
2018
).
5.
M.
Yan
,
Q.
Zhang
,
Y.
Zhao
,
J.
Jianping
,
T.
Yang
,
J.
Zhang
, and
X.
Li
,
J. Nanosci. Nanotechnol.
15
,
6279
(
2015
).
6.
J.-H.
Lan
,
J.
Kanicki
,
A.
Catalano
,
J.
Keane
,
W.
den Boer
, and
T.
Gu
,
J. Electron. Mater.
25
,
1806
(
1996
).
7.
C.-Y.
Lee
,
C.
Chang
,
W.-P.
Shih
, and
C.-L.
Dai
,
Thin Solid Films
518
,
3992
(
2010
).
8.
G. N.
Parsons
and
R. D.
Clark
,
Chem. Mater.
32
,
4920
(
2020
).
9.
A. J. M.
Mackus
,
M. J. M.
Merkx
, and
W. M. M.
Kessels
,
Chem. Mater.
31
,
2
(
2019
).
10.
X.
Jiang
and
S. F.
Bent
,
J. Phys. Chem. C
113
,
17613
(
2009
).
11.
L.
Lecordier
,
S.
Herregods
, and
S.
Armini
,
J. Vac. Sci. Technol. A
36
,
031605
(
2018
).
12.
J.
Maciel
,
M. C. L.
Martins
, and
M. A.
Barbosa
,
J. Biomed. Mater. Res.
94
,
833
(
2010
).
13.
R.
Chen
,
H.
Kim
,
P. C.
McIntyre
, and
S. F.
Bent
,
Chem. Mater.
17
,
536
(
2005
).
14.
Y. X.
Zhuang
,
O.
Hansen
,
T.
Knieling
,
C.
Wang
,
P.
Rombach
,
W.
Walter
,
W.
Benecke
,
M.
Kehlenbeck
, and
J.
Koblitz
,
J. Microelectromech. Syst.
16
,
1451
(
2007
).
15.
J.
Hong
,
D. W.
Porter
,
R.
Sreenivasan
,
P. C.
McIntyre
, and
S. F.
Bent
,
Langmuir
23
,
1160
(
2007
).
16.
D. H.
Levy
,
S. F.
Nelson
, and
D.
Freeman
,
J. Display Technol.
5
,
484
(
2009
).
17.
M.
Napari
,
J.
Malm
,
R.
Lehto
,
J.
Julin
,
K.
Arstila
,
T.
Sajavaara
, and
M.
Lahtinen
,
J. Vac. Sci. Technol. A
33
,
01A128
(
2015
).
18.
A.
Sinha
,
D. W.
Hess
, and
C. L. J.
Henderson
,
J. Electrochem. Soc.
153
,
G465
(
2006
).
19.
E.
Färm
,
M.
Kemell
,
M.
Ritala
, and
M.
Leskela
,
J. Phys. Chem. C
112
,
15791
(
2008
).
20.
S. F.
Nelson
,
C. R.
Ellinger
, and
D. H.
Levy
,
ACS Appl. Mater. Interfaces
7
,
2754
(
2015
).
21.
E.
Färm
,
M.
Kemell
,
E.
Santala
,
M.
Ritala
, and
M.
Leskelä
,
J. Electrochem. Soc.
157
,
K10
(
2010
).
22.
C. R.
Ellinger
and
S. F.
Nelson
,
Chem. Mater.
26
,
1514
(
2014
).
23.
M. J.
Biercuk
,
D. J.
Monsma
,
C. M.
Marcus
,
J. S.
Becker
, and
R. G.
Gordon
,
Appl. Phys. Lett.
83
,
2405
(
2003
).
24.
M. A.
Forte
,
R. M.
Silva
,
C. J.
Tavares
, and
R.
Feirreira e Silva
,
Polymers
13
,
1346
(
2021
).
25.
Y.
Hua
,
W. P.
King
, and
C. L.
Henderson
,
Microelectron. Eng.
85
,
934
(
2008
).
26.
A.
Haider
,
P.
Deminskyi
,
T. M.
Khan
,
H.
Eren
, and
N.
Biyikli
,
J. Phys. Chem. C
120
,
26393
(
2016
).
27.
E.
Stevens
,
Y.
Tomczak
,
B. T.
Chan
,
E.
Altamirano Sanchez
,
G. N.
Parsons
, and
A.
Delabie
,
Chem. Mater.
30
,
3223
(
2018
).
28.
T. G.
Pattison
 et al,
ACS Nano
14
,
4276
(
2020
).
29.
29 
K. K.
Gleason
,
CVD Polymers: Fabrication of Organic Surfaces and Devices
(
Wiley-VCH Verlag GmbH & Co.
,
Weinheim
,
2015
).
30.
S. J.
Yu
 et al,
Adv. Eng. Mater.
20
,
1700622
(
2018
).
31.
K. K. S.
Lau
and
K. K.
Gleason
,
Macromolecules
39
,
3688
(
2006
).
32.
T. P.
Martin
,
S. E.
Kooi
,
S. H.
Chang
,
K. L.
Sedransk
, and
K.
Gleason
,
Biomaterials
28
,
909
(
2007
).
33.
P.
Montméat
,
J.
Deschamp
,
R.
Enyedi
,
F.
Fournel
,
Z.
Zavvou
, and
V.
Jousseaume
,
Mater. Sci. Semicond. Process.
148
,
106808
(
2022
).
34.
G. N.
Parsons
 et al,
Coordination Chem. Rev.
257
,
3323
(
2013
).
35.
Z.
Shi
and
A. V.
Walker
,
J. Phys. Chem. C
119
,
1091
(
2015
).
36.
L.
Bonnet
,
B.
Altemus
,
R.
Scarazzini
,
M.
Veillerot
,
F.
D’Agosto
,
J.
Faguet
, and
V.
Jousseaume
,
Macromol. Mater. Eng.
302
,
1700315
(
2017
).
37.
H.
Fujiwara
and
M.
Kondo
,
Phys. Rev. B
71
,
075109
(
2005
).
38.
J. W.
Elam
and
S. M.
George
,
Chem. Mater.
15
,
1020
(
2003
).
39.
V.
Lujala
,
J.
Skarp
,
M.
Tammenmaa
, and
T.
Suntola
,
Appl. Surf. Sci.
82–83
,
34
(
1994
).
40.
T.-L.
Liu
,
L.
Zeng
,
K. L.
Nardi
,
D. M.
Hausmann
, and
S. F.
Bent
,
Langmuir
37
,
11637
(
2021
).
41.
L.
Demelius
,
M.
Blatnik
,
K.
Unger
,
P.
Parlanti
,
M.
Gemmi
, and
A. M.
Coclite
,
Appl. Surf. Sci.
604
,
154619
(
2022
).
42.
J.
El Sabahy
,
J.
Berthier
,
L.
Bonnet
,
M.
Matheron
,
T.
Bordy
,
C.
Yeromonahos
,
F.
Ricoul
, and
V.
Jousseaume
,
Sens. Actuators B: Chem.
202
,
941
(
2014
).
43.
L. E.
Ocola
,
A.
Connolly
,
D. J.
Gosztola
,
R. D.
Schaller
, and
A.
Yanguas-Gil
,
J. Phys. Chem. C
121
,
1893
(
2017
).
44.
C. Z.
Leng
and
M. D.
Losego
,
Mater. Horizons
4
,
747
(
2017
).
45.
E. F.
DiMauro
and
M. C.
Kozlowski
,
Org. Lett.
3
,
3053
(
2001
).
46.
S.
Patwardhan
,
D. H.
Cao
,
G. C.
Schatz
, and
A. B. F.
Martinson
,
ACS Appl. Energy Mater.
2
,
4618
(
2019
).
47.
E.
Lee
,
J.
Faguet
,
J.
Brcka
,
O.
Akiyama
,
J.
Liu
, and
D.
Toma
,
Thin Solid Films
519
,
4571
(
2011
).
You do not currently have access to this content.