Selective atomic layer deposition shows a great perspective on the downscaling manufacturing of nanoelectronics with high precision. The interaction between Mn precursors and Pt terrace, (100), and (111) facets is investigated by density functional theory and microkinetic modeling to reveal the effect of the ligands of the precursors on MnOx selective growth on the Pt facets. MnCl2 and MnCp2 have preferential deposition on the Pt terrace and (100) over (111), while Mn(acac)2 does not show obvious selectivity on the three pristine Pt facets due to the extremely strong adsorption energies. It is found that the adsorption energies of the Mn precursors exhibit size dependence mainly due to the van der Waals interaction. The increase in the number of methyl substituents of Cp-derivate precursors enlarges the decomposition energy barrier of the precursor on (100) due to the steric hindrance, which weakens the selectivity between (111) and (100) facets. It is found that the oxygen groups on these facets accelerate the decomposition of the precursors, which diminishes the selectivity of the precursors on the three Pt facets. While the surface hydroxyl groups significantly weaken the adsorption of Mn(acac)2, it exhibits preferential deposition on hydroxylated Pt (111) among the three facets. Our work highlights the group effect on adsorption, reaction kinetics, and the selective growth of Mn precursors on Pt facets, which provides important guidance to screen precursors to achieve selective deposition of metal oxides on differentiated metal surfaces.

1.
R.
Chen
,
Y.-C.
Li
,
J.-M.
Cai
,
K.
Cao
, and
others
,
Int. J. Extreme Manuf.
2
,
022002
(
2020
).
2.
G. N.
Parsons
and
R. D.
Clark
,
Chem. Mater.
32
,
4920
(
2020
).
3.
A. J. M.
Mackus
,
M. J. M.
Merkx
, and
W. M. M.
Kessels
,
Chem. Mater.
31
,
2
(
2019
).
4.
X.
Liu
,
Q.
Zhu
,
Y.
Lang
,
K.
Cao
,
S.
Chu
,
B.
Shan
, and
R.
Chen
,
Angew. Chem. Int. Ed.
56
,
1648
(
2017
).
5.
D.
Bobb-Semple
,
K. L.
Nardi
,
N.
Draeger
,
D. M.
Hausmann
, and
S. F.
Bent
,
Chem. Mater.
31
,
1635
(
2019
).
6.
A.
Mameli
,
M. J.
Merkx
,
B.
Karasulu
,
F.
Roozeboom
,
W. (Erwin) M. M.
Kessels
, and
A. J. M.
Mackus
,
ACS Nano
11
,
9303
(
2017
).
7.
R.
Khan
 et al,
Chem. Mater.
30
,
7603
(
2018
).
8.
J.
Yarbrough
,
A. B.
Shearer
, and
S. F.
Bent
,
J. Vac. Sci. Technol. A
39
,
021002
(
2021
).
9.
K.
Kim
, HBR. Lee, R. Johnson et al, “Selective metal deposition at graphene line defects by atomic layer deposition,”
Nat Commun
5
,
4781
(
2014
).
10.
K.
Cao
,
J.
Cai
, and
R.
Chen
,
Chem. Mater.
32
,
2195
(
2020
).
11.
Y.-C.
Li
,
K.
Cao
,
Y.-X.
Lan
,
J.-M.
Zhang
,
M.
Gong
,
Y.-W.
Wen
,
B.
Shan
, and
R.
Chen
,
Molecules
26
,
3056
(
2021
).
12.
T.
Suh
,
Y.
Yang
,
H. W.
Sohn
,
R. A.
DiStasio
, and
J. R.
Engstrom
,
J. Vac. Sci. Technol. A
38
,
062411
(
2020
).
13.
A. J. M.
Mackus
,
A. A.
Bol
, and
W. M. M.
Kessels
,
Nanoscale
6
,
10941
(
2014
).
14.
A. J. M.
Mackus
,
N. F. W.
Thissen
,
J. J. L.
Mulders
,
P. H. F.
Trompenaars
,
M. A.
Verheijen
,
A. A.
Bol
, and
W. M. M.
Kessels
,
J. Phys. Chem. C
117
,
10788
(
2013
).
15.
A.
Mameli
,
B.
Karasulu
,
M. A.
Verheijen
,
B.
Barcones
,
B.
Macco
,
A. J. M.
Mackus
,
W. M. M. E.
Kessels
, and
F.
Roozeboom
,
Chem. Mater.
31
,
1250
(
2019
).
16.
Q.
Hu
,
S.
Wang
,
Z.
Gao
,
Y.
Li
,
Q.
Zhang
,
Q.
Xiang
, and
Y.
Qin
,
Appl. Catal. B: Environ.
218
,
591
(
2017
).
17.
J.
Cai
,
J.
Zhang
,
K.
Cao
,
M.
Gong
,
Y.
Lang
,
X.
Liu
,
S.
Chu
,
B.
Shan
, and
R.
Chen
,
ACS Appl. Nano Mater.
1
,
522
(
2018
).
18.
H.
Li
 et al,
Angew. Chem.
133
,
25042
(
2021
).
19.
J.
Cai
,
M. J. M.
Merkx
,
Y.
Lan
,
Y.
Jing
,
K.
Cao
,
Y.
Wen
,
W. M. M.
Kessels
,
A. J. M.
Mackus
, and
R.
Chen
,
J. Vac. Sci. Technol. A
39
,
012404
(
2021
).
20.
J.
Lu
,
B.
Liu
,
N. P.
Guisinger
,
P. C.
Stair
,
J. P.
Greeley
, and
J. W.
Elam
,
Chem. Mater.
26
,
6752
(
2014
).
21.
J.
Lu
,
B.
Liu
,
J. P.
Greeley
,
Z.
Feng
,
J. A.
Libera
,
Y.
Lei
,
M. J.
Bedzyk
,
P. C.
Stair
, and
J. W.
Elam
,
Chem. Mater.
24
,
2047
(
2012
).
22.
K.
Cao
,
J.
Cai
,
X.
Liu
, and
R.
Chen
,
J. Vac. Sci. Technol. A
36
,
010801
(
2018
).
23.
K.
Cao
,
L.
Shi
,
M.
Gong
,
J.
Cai
,
X.
Liu
,
S.
Chu
,
Y.
Lang
,
B.
Shan
, and
R.
Chen
,
Small
13
,
1700648
(
2017
).
24.
Y.
Wen
,
J.
Cai
,
J.
Zhang
,
J.
Yang
,
L.
Shi
,
K.
Cao
,
R.
Chen
, and
B.
Shan
,
Chem. Mater.
31
,
101
(
2019
).
25.
J.
Yang
,
K.
Cao
,
Q.
Hu
,
Y.
Wen
,
X.
Liu
,
R.
Chen
, and
B.
Shan
,
J. Mater. Chem. A
8
,
4308
(
2020
).
26.
H. G.
Kim
 et al,
Chem. Mater.
32
,
8921
(
2020
).
27.
I.-K.
Oh
,
T. E.
Sandoval
,
T.-L.
Liu
,
N. E.
Richey
, and
S. F.
Bent
,
Chem. Mater.
33
,
3926
(
2021
).
28.
J.
Yarbrough
,
F.
Pieck
,
D.
Grigjanis
,
I.-K.
Oh
,
P.
Maue
,
R.
Tonner-Zech
, and
S. F.
Bent
,
Chem. Mater.
34
,
4646
(
2022
).
29.
T.-L.
Liu
and
S. F.
Bent
,
Chem. Mater.
33
,
513
(
2021
).
30.
C.-Y.
Chou
 et al,
Chem. Mater.
33
,
5584
(
2021
).
31.
J.
Liu
,
H.
Lu
,
D. W.
Zhang
, and
M.
Nolan
,
J. Phys. Chem. C
124
,
11990
(
2020
).
32.
C. K.
Ande
,
H. C. M.
Knoops
,
K.
de Peuter
,
M.
van Drunen
,
S. D.
Elliott
, and
W. M. M.
Kessels
,
J. Phys. Chem. Lett.
6
,
3610
(
2015
).
33.
M.
Shahmohammadi
,
R.
Mukherjee
,
C. G.
Takoudis
, and
U. M.
Diwekar
,
Chem. Eng. Sci.
234
,
116416
(
2021
).
34.
S. D.
Elliott
,
Surf. Coat. Technol.
201
,
9076
(
2007
).
35.
Y.
Liang
,
B.
Zhao
,
J.
Wang
,
M.
Zhao
, and
Y.
Cheng
,
Mol. Catal.
521
,
112198
(
2022
).
36.
M.
Wang
,
L.
Zhang
,
W.
Huang
,
T.
Xiu
,
C.
Zhuang
, and
J.
Shi
,
Chem. Eng. J.
320
,
667
(
2017
).
37.
N.
Zhang
,
L.
Li
,
R.
Wu
,
L.
Song
,
L.
Zheng
,
G.
Zhang
, and
H.
He
,
Catal. Sci. Technol.
9
,
347
(
2019
).
38.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
39.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
40.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
41.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
42.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002173 for adsorption energies and structure of molecule adsorption on Pt (111) calculated with two different convergence criteria.
43.
J. W.
Arblaster
, “Crystallographic properties of platinum, platinum metals,”
Rev.
50
,
118
(
2006
).
44.
I.-K.
Oh
,
T. E.
Sandoval
,
T.-L.
Liu
,
N. E.
Richey
,
C. T.
Nguyen
,
B.
Gu
,
H.-B.-R.
Lee
,
R.
Tonner-Zech
, and
S. F.
Bent
,
J. Am. Chem. Soc.
144
,
11757
(
2022
).
45.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
46.
T. A.
Manz
and
N. G.
Limas
,
RSC Adv.
6
,
47771
(
2016
).
47.
V.
Wang
,
N.
Xu
,
J.-C.
Liu
,
G.
Tang
, and
W.-T.
Geng
,
Comput. Phys. Commun.
267
,
108033
(
2021
).
48.
L. F.
Shampine
,
M. W.
Reichelt
, and
J. A.
Kierzenka
,
SIAM Rev.
41
,
538
(
1999
).
49.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002173 for the summary of adsorption energy of precursors on (100), (111), and terrace facets.
50.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
,
J. Phys.: Condens. Matter
21
,
084204
(
2009
).
51.
S.
Grimme
,
R.
Huenerbein
, and
S.
Ehrlich
,
ChemPhysChem
12
,
1258
(
2011
).
52.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002173 for the structure for MnCl2, MnCp2, and Mn(acac)2 adsorption and decomposition on Pt (100), (111), and terrace facets.
53.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002173 for the charge difference analysis for decomposed MnCl2 on (100) and (111) facets.
54.
X.
Hu
,
J.
Schuster
,
S. E.
Schulz
, and
T.
Gessner
,
Phys. Chem. Chem. Phys.
17
,
26892
(
2015
).
55.
J.-M.
Lin
,
A. V.
Teplyakov
, and
J. C. F.
Rodríguez-Reyes
,
J. Vac. Sci. Technol. A
31
,
021401
(
2013
).
56.
X.
Hu
,
J.
Schuster
, and
S. E.
Schulz
,
J. Phys. Chem. C
121
,
28077
(
2017
).
57.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002173 for the structure for the configurations of OH and O sites on 100, 111, and terrace facets.
58.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002173 for the structure for MnCl2, MnCp2, and Mn(acac)2 adsorption and decomposition on O adsorbed Pt (100), (111), and terrace facets.
59.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002173 for the structure for the summary of DFT results for the reactions of precursors on the (100), (111), and terrace facets.
60.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002173 for the structure for the reaction diagram of the three precursors, MnCl2, MnCp2, and Mn(acac)2, on the O adsorbed Pt(100), (111), and terrace facets.

Supplementary Material

You do not currently have access to this content.