Chemometrics/informatics and data analysis, in general, are increasingly important topics in x-ray photoelectron spectroscopy (XPS) because of the large amount of information (data/spectra) that are often collected in degradation, depth profiling, operando, and imaging studies. In this guide, we discuss vital, theoretical aspects and considerations for chemometrics/informatics analyses of XPS data with a focus on exploratory data analysis tools that can be used to probe XPS datasets. These tools include a summary statistic [pattern recognition entropy (PRE)], principal component analysis (PCA), multivariate curve resolution (MCR), and cluster analysis. The use of these tools is explained through the following steps: (A) Gather/use all the available information about one's samples, (B) examine (plot) the raw data, (C) developing a general strategy for the chemometrics/informatics analysis, (D) preprocess the data, (E) where to start a chemometrics/informatics analysis, including identifying outliers or unexpected features in datasets, (F) determine the number of abstract factors to keep in a model, (G) return to the original data after a chemometrics/informatics analysis to confirm findings, (H) perform MCR, (I) peak fit the MCR factors, (J) identify intermediates in MCR analyses, (K) perform cluster analysis, and (L) how to start doing chemometrics/informatics in one's work. This guide has Paper II [Avval et al., J. Vac. Sci. Technol. A 40, 063205 (2022)] that illustrates these steps/principles by applying them to two fairly large XPS datasets. In these papers, special emphasis is placed on MCR. Indeed, in this paper and Paper II, we believe that, for the first time, it is suggested and shown that (1) MCR components/factors can be peak fit as though they were XPS narrow scans and (2) MCR can reveal intermediates in the degradation of a material. The other chemometrics/informatics methods are also useful in demonstrating the presence of outliers, a break (irregularity) in one of the datasets, and the general trajectory/evolution of the datasets. Cluster analysis generated a series of average spectra that describe the evolution of one of the datasets.

1.
K.
Artyushkova
and
J. E.
Fulghum
,
J. Electron Spectrosc. Relat. Phenom.
121
,
33
(
2001
).
2.
S.
Pylypenko
,
K.
Artyushkova
, and
J. E.
Fulghum
,
Appl. Surf. Sci.
256
,
3204
(
2010
).
3.
M. P.
Felicissimo
,
J. L. S.
Peixoto
,
R.
Tomasi
,
A.
Azioune
,
J.-J.
Pireaux
,
L.
Houssiau
, and
U. P.
Rodrigues Filho
,
Philos. Mag.
84
,
3483
(
2004
).
4.
S.
Chatterjee
,
B.
Singh
,
A.
Diwan
,
Z. R.
Lee
,
M. H.
Engelhard
,
J.
Terry
,
H. D.
Tolley
,
N. B.
Gallagher
, and
M. R.
Linford
,
Appl. Surf. Sci.
433
,
994
(
2018
).
5.
T. G.
Avval
 et al,
J. Chem. Inf. Model.
61
,
4173
(
2021
).
6.
H.
Ahn
,
D. W.
Oblas
, and
J. E.
Whitten
,
Macromolecules
37
,
3381
(
2004
).
7.
K.
Artyushkova
and
J. E.
Fulghum
,
Surf. Interface Anal.
31
,
352
(
2001
).
8.
C.
Bittencourt
,
M. P.
Felicissimo
,
J.-J.
Pireaux
, and
L.
Houssiau
,
J. Agric. Food Chem.
53
,
6195
(
2005
).
9.
B. J.
Tyler
,
Appl. Surf. Sci.
252
,
6875
(
2006
).
10.
R. E.
Peterson
and
B. J.
Tyler
,
Appl. Surf. Sci.
203–204
,
751
(
2003
).
11.
L.
Yang
,
Y.-Y.
Lua
,
G.
Jiang
,
B. J.
Tyler
, and
M. R.
Linford
,
Anal. Chem.
77
,
4654
(
2005
).
12.
D. J.
Graham
and
D. G.
Castner
,
Biointerphases
7
,
49
(
2012
).
13.
M. S.
Wagner
,
D. J.
Graham
, and
D. G.
Castner
,
Appl. Surf. Sci.
252
,
6575
(
2006
).
14.
P.
Van der Heide
,
X-ray Photoelectron Spectroscopy: An Introduction to Principles and Practices
(
John Wiley & Sons
, Hoboken, NJ,
2011
).
15.
S.
Hofmann
,
Auger-and X-ray Photoelectron Spectroscopy in Materials Science: a User-Oriented Guide
(
Springer Science & Business Media
,
2012
).
16.
F. A.
Stevie
and
C. L.
Donley
,
J. Vac. Sci. Technol. A
38
,
063204
(
2020
).
17.
D. R.
Baer
 et al,
J. Vac. Sci. Technol. A
37
,
031401
(
2019
).
18.
V.
Gupta
,
H.
Ganegoda
,
M. H.
Engelhard
,
J.
Terry
, and
M. R.
Linford
,
J. Chem. Educ.
91
,
232
(
2014
).
19.
D. R.
Baer
and
I. S.
Gilmore
,
J. Vac. Sci. Technol. A
36
,
068502
(
2018
).
20.
The National Academies of Sciences, “Engineering & Medicine,” in Reproducibility and Replicability in Science (National Academies Press, 2019).
21.
D. R.
Baer
,
J. Vac. Sci. Technol. A
38
,
031201
(
2020
).
22.
S.
Tougaard
,
J. Vac. Sci. Technol. A
39
,
011201
(
2020
).
23.
C. J.
Powell
,
J. Vac. Sci. Technol. A
38
,
023209
(
2020
).
24.
A. G.
Shard
,
J. Vac. Sci. Technol. A
38
,
041201
(
2020
).
25.
T. R.
Gengenbach
,
G. H.
Major
,
M. R.
Linford
, and
C. D.
Easton
,
J. Vac. Sci. Technol. A
39
,
013204
(
2021
).
26.
M. J.
Sweetman
,
S. M.
Hickey
,
D. A.
Brooks
,
J. D.
Hayball
, and
S. E.
Plush
,
Adv. Funct. Mater.
29
,
1808740
(
2019
).
27.
D. R.
Baer
,
G. E.
McGuire
,
K.
Artyushkova
,
C. D.
Easton
,
M. H.
Engelhard
, and
A. G.
Shard
,
J. Vac. Sci. Technol. A
39
,
021601
(
2021
).
28.
J. V.
Macpherson
,
Phys. Chem. Chem. Phys.
17
,
2935
(
2015
).
29.
P. A.
Navrátil
,
B.
Westing
,
G. P.
Johnson
,
A.
Athalye
,
J.
Carreno
, and
F.
Rojas
, in
Presented at the Advances in Visual Computing
,
Las Vegas, NV, 2009
(Springer, Berlin, Heidelberg, Germany,
2009
).
30.
J.
Wolstenholme
,
J. Vac. Sci. Technol. A
38
,
043206
(
2020
).
31.
Tahereh G.
Avval
,
Hyrum
Haack
,
Neal
Gallagher
,
David
Morgan
,
Pascal
Bargiela
,
Neal
Fairley
,
Vincent
Fernandez
, and
M. R.
Linford
,
J. Vac. Sci. Technol. A
40
, 063205 (
2022
).
32.
R.
Bro
and
A. K.
Smilde
,
Anal. Methods
6
,
2812
(
2014
).
33.
A.
de Juan
and
R.
Tauler
,
Crit. Rev. Anal. Chem.
36
,
163
(
2006
).
34.
N. B.
Gallagher
,
J. M.
Shaver
,
E. B.
Martin
,
J.
Morris
,
B. M.
Wise
, and
W.
Windig
,
Chemom. Intell. Lab. Syst.
73
,
105
(
2004
).
35.
S.
Chatterjee
and
M. R.
Linford
,
Bull. Chem. Soc. Jpn.
91
,
824
(
2018
).
36.
J. E. Jackson, A User's Guide to Principal Components (Wiley, New York, NY, 1991).
37.
B. M.
Wise
and
N. B.
Gallagher
,
J. Process. Control
6
,
329
(
1996
).
38.
F.
Zhang
,
R. J.
Gates
,
V. S.
Smentkowski
,
S.
Natarajan
,
B. K.
Gale
,
R. K.
Watt
,
M. C.
Asplund
, and
M. R.
Linford
,
J. Am. Chem. Soc.
129
,
9252
(
2007
).
39.
D. S.
Jensen
 et al,
Surf. Interface Anal.
45
,
1273
(
2013
).
40.
L.
Pei
,
G.
Jiang
,
R. C.
Davis
,
J. M.
Shaver
,
V. S.
Smentkowski
,
M. C.
Asplund
, and
M. R.
Linford
,
Appl. Surf. Sci.
253
,
5375
(
2007
).
41.
A. M.
Spool
,
The Practice of TOF-SIMS Time of Flight Secondary Ion Mass Spectrometry
(
Momentum
, New York, NY,
2016
).
42.
C. V.
Cushman
,
P.
Brüner
,
J.
Zakel
,
G. H.
Major
,
B. M.
Lunt
,
N. J.
Smith
,
T.
Grehl
, and
M. R.
Linford
,
Anal. Methods
8
,
3419
(
2016
).
43.
H. G.
Tompkins
and
J. N.
Hilfiker
,
Spectroscopic Ellipsometry Practical Application to Thin Film Characterization
(
Momentum
, New York, NY,
2015
).
44.
B.
Voigtländer
,
Atomic Force Microscopy
(
Springer
,
2019
).
45.
G.
Haugstad
,
Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications
(
John Wiley & Sons
, Hoboken, NJ,
2012
).
46.
P.
Kraniauskas
,
Transforms in Signals and Systems (Modern Applications of Mathematics)
(
Addison-Wesley Longman, Incorporated
, Workinghma, UK,
1992
).
47.
R. W.
Schafer
,
IEEE Signal Process. Mag.
28
,
111
(
2011
).
48.
W. H.
Press
and
S. A.
Teukolsky
,
Comput. Phys.
4
,
669
(
1990
).
49.
J.
Luo
,
K.
Ying
, and
J.
Bai
,
Signal Process.
85
,
1429
(
2005
).
50.
A.
Savitzky
and
M. J. E.
Golay
,
Anal. Chem.
36
,
1627
(
1964
).
51.
N.
Fairley
, see https://youtu.be/uQYVBlouJs0 for characterization of sp2 and sp3 carbon in CasaXPS. (2017).
52.
O. E.
de Noord
,
Chemom. Intell. Lab. Syst.
23
,
65
(
1994
).
53.
B.
Singh
,
D.
Velázquez
,
J.
Terry
, and
M. R.
Linford
,
J. Electron Spectrosc. Relat. Phenom.
197
,
56
(
2014
).
54.
B.
Singh
,
D.
Velázquez
,
J.
Terry
, and
M. R.
Linford
,
J. Electron Spectrosc. Relat. Phenom.
197
,
112
(
2014
).
55.
T.
Zuppa Neto
 et al,
J. Am. Soc. Mass Spectrom.
31
,
1525
(
2020
).
56.
S.
Chatterjee
,
G. H.
Major
,
B.
Paull
,
E. S.
Rodriguez
,
M.
Kaykhaii
, and
M. R.
Linford
,
J. Chromatogr. A
1558
,
21
(
2018
).
57.
S.
Chatterjee
,
S. C.
Chapman
,
B. M.
Lunt
, and
M. R.
Linford
,
Bull. Chem. Soc. Jpn.
91
,
1775
(
2018
).
58.
R. L.
McLaren
,
G. R.
Owen
, and
D. J.
Morgan
,
Results Surf. Interfaces
6
,
100032
(
2022
).
59.
L.
Edwards
,
P.
Mack
, and
D. J.
Morgan
,
Surf. Interface Anal.
51
,
925
(
2019
).
60.
61.
R.
Kramer
,
Chemometric Techniques for Quantitative Analysis
(
CRC
, Boca Raton, FL,
1998
).
You do not currently have access to this content.