Chemometrics/informatics, and data analysis in general, are increasingly important in x-ray photoelectron spectroscopy (XPS) because of the large amount of information (spectra/data) that is often collected in degradation, depth profiling, operando, and imaging studies. In this guide, we present chemometrics/informatics analyses of XPS data using a summary statistic (pattern recognition entropy), principal component analysis, multivariate curve resolution (MCR), and cluster analysis. These analyses were performed on C 1s, O 1s, and concatenated (combined) C 1s and O 1s narrow scans obtained by repeatedly analyzing samples of cellulose and tartaric acid, which led to their degradation. We discuss the following steps, principles, and methods in these analyses: gathering/using all of the information about samples, performing an initial evaluation of the raw data, including plotting it, knowing which chemometrics/informatics analyses to choose, data preprocessing, knowing where to start the chemometrics/informatics analysis, including the initial identification of outliers and unexpected features in data sets, returning to the original data after an informatics analysis to confirm findings, determining the number of abstract factors to keep in a model, MCR, including peak fitting MCR factors, more complicated MCR factors, and the presence of intermediates revealed through MCR, and cluster analysis. Some of the findings of this work are as follows. The various chemometrics/informatics methods showed a break/abrupt change in the cellulose data set (and in some cases an outlier). For the first time, MCR components were peak fit. Peak fitting of MCR components revealed the presence of intermediates in the decomposition of tartaric acid. Cluster analysis grouped the data in the order in which they were collected, leading to a series of average spectra that represent the changes in the spectra. This paper is a companion to a guide that focuses on the more theoretical aspects of the themes touched on here.

1.
T. G.
Avval
 et al,
J. Chem. Inf. Model.
61
,
4173
(
2021
).
2.
R.
Bro
and
A. K.
Smilde
,
Anal. Methods
6
,
2812
(
2014
).
3.
A.
De Juan
and
R.
Tauler
,
Crit. Rev. Anal. Chem.
36
,
163
(
2006
).
4.
N. B.
Gallagher
,
J. M.
Shaver
,
E. B.
Martin
,
J.
Morris
,
B. M.
Wise
, and
W.
Windig
,
Chemom. Intell. Lab. Syst.
73
,
105
(
2004
).
5.
S.
Chatterjee
,
B.
Singh
,
A.
Diwan
,
Z. R.
Lee
,
M. H.
Engelhard
,
J.
Terry
,
H. D.
Tolley
,
N. B.
Gallagher
, and
M. R.
Linford
,
Appl. Surf. Sci.
433
,
994
(
2018
).
6.
S.
Chatterjee
and
M. R.
Linford
,
Bull. Chem. Soc. Jpn.
91
,
824
(
2018
).
7.
J. E.
Jackson
,
A User's Guide to Principal Components
(
Wiley
,
New York
,
1991
).
8.
B. M.
Wise
and
N. B.
Gallagher
,
J. Process Control
6
,
329
(
1996
).
9.
P.
Van der Heide
,
X-ray Photoelectron Spectroscopy: An Introduction to Principles and Practices
(
Wiley
,
New York
,
2011
).
10.
S.
Hofmann
,
Auger-and X-ray Photoelectron Spectroscopy in Materials Science: A User-Oriented Guide
(
Springer Science & Business Media
,
New York
,
2012
).
11.
F. A.
Stevie
and
C. L.
Donley
,
J. Vac. Sci. Technol. A
38
,
063204
(
2020
).
12.
D. R.
Baer
 et al,
J. Vac. Sci. Technol. A
37
,
031401
(
2019
).
13.
V.
Gupta
,
H.
Ganegoda
,
M. H.
Engelhard
,
J.
Terry
, and
M. R.
Linford
,
J. Chem. Educ.
91
,
232
(
2014
).
14.
D. R.
Baer
and
I. S.
Gilmore
,
J. Vac. Sci. Technol. A
36
,
068502
(
2018
).
15.
E. National Academies of Sciences and Medicine
, Reproducibility and Replicability in Science (National Academies, 2019).
16.
D. R.
Baer
,
J. Vac. Sci. Technol. A
38
,
031201
(
2020
).
17.
S.
Tougaard
,
J. Vac. Sci. Technol. A
39
,
011201
(
2021
).
18.
C. J.
Powell
,
J. Vac. Sci. Technol. A
38
,
023209
(
2020
).
19.
A. G.
Shard
,
J. Vac. Sci. Technol. A
38
,
041201
(
2020
).
20.
T. R.
Gengenbach
,
G. H.
Major
,
M. R.
Linford
, and
C. D.
Easton
,
J. Vac. Sci. Technol. A
39
,
013204
(
2021
).
21.
M. J.
Sweetman
,
S. M.
Hickey
,
D. A.
Brooks
,
J. D.
Hayball
, and
S. E.
Plush
,
Adv. Funct. Mater.
29
,
1808740
(
2019
).
22.
D. R.
Baer
,
G. E.
McGuire
,
K.
Artyushkova
,
C. D.
Easton
,
M. H.
Engelhard
, and
A. G.
Shard
,
J. Vac. Sci. Technol. A
39
,
021601
(
2021
).
23.
J. V.
Macpherson
,
Phys. Chem. Chem. Phys.
17
,
2935
(
2015
).
24.
P. A.
Navrátil
,
B.
Westing
,
G. P.
Johnson
,
A.
Athalye
,
J.
Carreno
, and
F.
Rojas
, paper presented at the Advances in Visual Computing, Berlin, Heidelberg, 2009.
25.
J.
Wolstenholme
,
J. Vac. Sci. Technol. A
38
,
043206
(
2020
).
26.
G.
Beamson
and
D.
Briggs
, High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (
Wiley
,
Chichester
,
1992
).
27.
G. P.
López
,
D. G.
Castner
, and
B. D.
Ratner
,
Surf. Interface Anal.
17
,
267
(
1991
).
28.
D. G.
Castner
and
B. D.
Ratner
,
Surf. Interface Anal.
15
,
479
(
1990
).
29.
H. E.
Canavan
,
X.
Cheng
,
D. J.
Graham
,
B. D.
Ratner
, and
D. G.
Castner
,
Langmuir
21
,
1949
(
2005
).
30.
D. I.
Patel
 et al,
Surf. Sci. Spectra
26
,
016801
(
2019
).
31.
T. G.
Avval
,
G. T.
Hodges
,
J.
Wheeler
,
D. H.
Ess
,
S.
Bahr
,
P.
Dietrich
,
M.
Meyer
,
A.
Thißen
, and
M. R.
Linford
,
Surf. Sci. Spectra
27
,
014006
(
2020
).
32.
G.
Jiang
,
G. A.
Husseini
,
L. L.
Baxter
, and
M. R.
Linford
,
Surf. Sci. Spectra
11
,
91
(
2004
).
33.
D.
Shah
,
S.
Bahr
,
P.
Dietrich
,
M.
Meyer
,
A.
Thißen
, and
M. R.
Linford
,
Surf. Sci. Spectra
26
,
024009
(
2019
).
34.
S. C.
Tahereh
,
G.
Avval
,
S.
Bahr
,
P.
Dietrich
,
M.
Meyer
,
A.
Thißen
, and
M. R.
Linford
,
Surf. Sci. Spectra
27
, 014006 (2020).
35.
D. R.
Baer
,
M. H.
Engelhard
, and
A. S.
Lea
,
Surf. Sci. Spectra
10
,
47
(
2003
).
36.
M. D.
Duca
,
C. L.
Plosceanu
, and
T.
Pop
,
J. Appl. Polym. Sci.
67
,
2125
(
1998
).
37.
L. A.
Pesin
,
E. M.
Baitinger
,
Y. P.
Kudryavtsev
, and
S. E.
Evsyukov
,
Appl. Phys. A
66
,
469
(
1998
).
38.
I. I.
Vointseva
,
L. M.
Gilman
,
Y. P.
Kudryavtsev
,
S. E.
Evsyukov
,
L. A.
Pesin
,
I. V.
Gribov
,
N. A.
Moskvina
, and
V. V.
Khvostov
,
Eur. Polym. J.
32
,
61
(
1996
).
39.
L.-S.
Johansson
,
J. M.
Campbell
, and
O. J.
Rojas
,
Surf. Interface Anal.
52
,
1134
(
2020
).
40.
L.-L.
Chua
,
M.
Dipankar
,
S.
Sivaramakrishnan
,
X.
Gao
,
D.
Qi
,
A. T. S.
Wee
, and
P. K. H.
Ho
,
Langmuir
22
,
8587
(
2006
).
41.
H.
Ahn
,
D. W.
Oblas
, and
J. E.
Whitten
,
Macromolecules
37
,
3381
(
2004
).
42.
K.
Artyushkova
and
J. E.
Fulghum
,
J. Electron Spectrosc. Relat. Phenom.
121
,
33
(
2001
).
43.
S.
Pylypenko
,
K.
Artyushkova
, and
J. E.
Fulghum
,
Appl. Surf. Sci.
256
,
3204
(
2010
).
44.
M. P.
Felicissimo
,
J. L. S.
Peixoto
,
R.
Tomasi
,
A.
Azioune
,
J.-J.
Pireaux
,
L.
Houssiau
, and
U. P.
Rodrigues Filho
,
Philos. Mag.
84
,
3483
(
2004
).
45.
K.
Artyushkova
and
J. E.
Fulghum
,
Surf. Interface Anal.
31
,
352
(
2001
).
46.
C.
Bittencourt
,
M. P.
Felicissimo
,
J.-J.
Pireaux
, and
L.
Houssiau
,
J. Agric. Food Chem.
53
,
6195
(
2005
).
47.
B. J.
Tyler
,
Appl. Surf. Sci.
252
,
6875
(
2006
).
48.
R. E.
Peterson
and
B. J.
Tyler
,
Appl. Surf. Sci.
203–204
,
751
(
2003
).
49.
L.
Yang
,
Y.-Y.
Lua
,
G.
Jiang
,
B. J.
Tyler
, and
M. R.
Linford
,
Anal. Chem.
77
,
4654
(
2005
).
50.
D. J.
Graham
and
D. G.
Castner
,
Biointerphases
7
,
49
(
2012
).
51.
M. S.
Wagner
,
D. J.
Graham
, and
D. G.
Castner
,
Appl. Surf. Sci.
252
,
6575
(
2006
).
52.
P.
Bargiela
,
V.
Fernandez
,
C.
Cardinaud
,
J.
Walton
,
M.
Greiner
,
D.
Morgan
,
N.
Fairley
, and
J.
Baltrusaitis
,
Appl. Surf. Sci.
566
,
150728
(
2021
).
53.
Tahereh G.
Avval
,
Neal
Gallagher
,
David
Morgan
,
Pascal
Bargiela
,
Neal
Fairley
,
Vincent
Fernandez
, and
M. R.
Linford
, “Practical guide on chemometrics/informatics in x-ray photoelectron spectroscopy (XPS). I. Introduction to methods useful for large or complex datasets,”
J. Vac. Sci. Technol. A
(to be published).
54.
P.
Kraniauskas
,
Transforms in Signals and Systems (Modern Applications of Mathematics)
(
Addison-Wesley Longman, Incorporated
,
Reading
,
MA
,
1992
).
55.
R.
Schafer
,
IEEE Signal Process. Mag.
28
,
111
(
2011
).
56.
W. H.
Press
and
S. A.
Teukolsky
,
Comput. Phys.
4
,
669
(
1990
).
57.
J.
Luo
,
K.
Ying
, and
J.
Bai
,
Signal Process.
85
,
1429
(
2005
).
58.
A.
Savitzky
and
M. J. E.
Golay
,
Anal. Chem.
36
,
1627
(
1964
).
59.
T. O.
Zuppa Neto
 et al,
J. Am. Soc. Mass Spectrom.
31
,
1525
(
2020
).
60.
S.
Chatterjee
,
G. H.
Major
,
B.
Paull
,
E. S.
Rodriguez
,
M.
Kaykhaii
, and
M. R.
Linford
,
J. Chromatogr. A
1558
,
21
(
2018
).
61.
S.
Chatterjee
,
S. C.
Chapman
,
B. M.
Lunt
, and
M. R.
Linford
,
Bull. Chem. Soc. Jpn.
91
,
1775
(
2018
).
62.
G. H.
Major
,
V.
Fernandez
,
N.
Fairley
, and
M. R.
Linford
,
Surf. Interface Anal.
54
,
262
(
2022
).
64.
L.
Pei
,
G.
Jiang
,
R. C.
Davis
,
J. M.
Shaver
,
V. S.
Smentkowski
,
M. C.
Asplund
, and
M. R.
Linford
,
Appl. Surf. Sci.
253
,
5375
(
2007
).
65.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001969 for summary statistics analyses of the data, PCA of the unpreprocessed cellulose data, comparison of component 1 and scan 22 in the MCR analysis of tartaric acid C 1s narrow scans with six components, and MCR analyses with different numbers of components of the concatenated C 1s and O 1s narrow scans of the tartaric acid data sets.

Supplementary Material

You do not currently have access to this content.